Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[1. None]
[2. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBRI DVO. A FEDERICO COMMANDINO VRBINATE IN PRISTINVM NITOREM RESTITVTI, ET COMMENTARIIS ILLVSTRATI.]
[3. CVM PRIVILEGIO IN ANNOS X. BONONIAE,]
[4. M D LXV.]
[5. RANVTIO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[6. Federicus Commandinus.]
[7. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER PRIMVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. POSITIO.]
[8. PROPOSITIO I.]
[9. PROPOSITIO II.]
[10. PROPOSITIO III.]
[11. PROPOSITIO IIII.]
[12. PROPOSITIO V.]
[13. PROPOSITIO VI.]
[14. PROPOSITIO VII.]
[15. POSITIO II.]
[16. COMMENTARIVS.]
[17. PROPOSITIO VIII.]
[18. COMMENTARIVS.]
[19. PROPOSITIO IX.]
[20. COMMENTARIVS.]
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="64">
          <p>
            <s xml:space="preserve">
              <pb file="0116" n="116" rhead="FED. COMMANDINI"/>
            quæ quidem in centro conueniunt. </s>
            <s xml:space="preserve">idem igitur eſt centrum
              <lb/>
            grauitatis quadrati, & </s>
            <s xml:space="preserve">circuli centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0115-02" xlink:href="fig-0115-02a">
              <image file="0115-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-02"/>
            </figure>
            <note position="right" xlink:label="note-0115-04" xlink:href="note-0115-04a" xml:space="preserve">51. tortil.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit pentagonum æquilaterum, & </s>
            <s xml:space="preserve">æquiangulum in circu-
              <lb/>
            lo deſcriptum a b c d e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iun-
              <lb/>
              <anchor type="figure" xlink:label="fig-0116-01a" xlink:href="fig-0116-01"/>
            cta b d, bifariamq́; </s>
            <s xml:space="preserve">in ſ diuiſa,
              <lb/>
            ducatur c f, & </s>
            <s xml:space="preserve">producatur ad
              <lb/>
            circuli circumferentiam in g;
              <lb/>
            </s>
            <s xml:space="preserve">quæ lineam a e in h ſecet: </s>
            <s xml:space="preserve">de-
              <lb/>
            inde iungantur a c, c e. </s>
            <s xml:space="preserve">Eodem
              <lb/>
            modo, quo ſupra demonſtra-
              <lb/>
            bimus angulum b c f æqualem
              <lb/>
            eſſe angulo d c f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">angulos
              <lb/>
            ad f utroſque rectos: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">idcir-
              <lb/>
            colineam c f g per circuli cen
              <lb/>
            trum tranſire. </s>
            <s xml:space="preserve">Quoniam igi-
              <lb/>
            tur latera c b, b a, & </s>
            <s xml:space="preserve">c d, d e æqualia ſunt; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">æquales anguli
              <lb/>
            c b a, c d e: </s>
            <s xml:space="preserve">erit baſis c a baſi c e, & </s>
            <s xml:space="preserve">angulus b c a angulo
              <lb/>
              <anchor type="note" xlink:label="note-0116-01a" xlink:href="note-0116-01"/>
            d c e æqualis. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">reliquus a c h, reliquo e c h. </s>
            <s xml:space="preserve">eſt au-
              <lb/>
            tem c h utrique triangulo a c h, e c h communis. </s>
            <s xml:space="preserve">quare
              <lb/>
            baſis a h æqualis eſt baſi h e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">anguli, quiad h recti: </s>
            <s xml:space="preserve">ſuntq́;
              <lb/>
            </s>
            <s xml:space="preserve">recti, qui ad f. </s>
            <s xml:space="preserve">ergo lineæ a e, b d inter ſe ſe æquidiſtant. </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="note" xlink:label="note-0116-02a" xlink:href="note-0116-02"/>
            Itaque cum trapezij a b d e latera b d, a e æquidiſtantia à li
              <lb/>
            nea fh bifariam diuidantur; </s>
            <s xml:space="preserve">centrum grauitatis ipſius erit
              <lb/>
            in linea f h, ex ultima eiuſdem libri Archimedis. </s>
            <s xml:space="preserve">Sed trian-
              <lb/>
              <anchor type="note" xlink:label="note-0116-03a" xlink:href="note-0116-03"/>
            guli b c d centrum grauitatis eſt in linea c f. </s>
            <s xml:space="preserve">ergo in eadem
              <lb/>
            linea c h eſt centrum grauitatis trapezij a b d e, & </s>
            <s xml:space="preserve">trian-
              <lb/>
            guli b c d: </s>
            <s xml:space="preserve">hoc eſt pentagoni ipſius centrum & </s>
            <s xml:space="preserve">centrum
              <lb/>
            circuli. </s>
            <s xml:space="preserve">Rurſus ſi iuncta a d, bifariamq́; </s>
            <s xml:space="preserve">ſecta in k, duca-
              <lb/>
            tur e k l: </s>
            <s xml:space="preserve">demonſtrabimus in ipſa utrumque centrum in
              <lb/>
            eſſe. </s>
            <s xml:space="preserve">Sequitur ergo, ut punctum, in quo lineæ c g, e l con-
              <lb/>
            ueniunt, idem ſit centrum circuli, & </s>
            <s xml:space="preserve">centrum grauitatis
              <lb/>
            pentagoni.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="3">
            <figure xlink:label="fig-0116-01" xlink:href="fig-0116-01a">
              <image file="0116-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0116-01"/>
            </figure>
            <note position="left" xlink:label="note-0116-01" xlink:href="note-0116-01a" xml:space="preserve">4. Primi.</note>
            <note position="left" xlink:label="note-0116-02" xlink:href="note-0116-02a" xml:space="preserve">08. primi.</note>
            <note position="left" xlink:label="note-0116-03" xlink:href="note-0116-03a" xml:space="preserve">13. Archi-
              <lb/>
            medis.</note>
          </div>
          <p>
            <s xml:space="preserve">Sit hexagonum a b c d e f æquilaterum, & </s>
            <s xml:space="preserve">æquiangulum
              <lb/>
            in circulo deſignatum: </s>
            <s xml:space="preserve">iunganturq́; </s>
            <s xml:space="preserve">b d, a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam ſe-</s>
          </p>
        </div>
      </text>
    </echo>