Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[1. None]
[2. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBRI DVO. A FEDERICO COMMANDINO VRBINATE IN PRISTINVM NITOREM RESTITVTI, ET COMMENTARIIS ILLVSTRATI.]
[3. CVM PRIVILEGIO IN ANNOS X. BONONIAE,]
[4. M D LXV.]
[5. RANVTIO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[6. Federicus Commandinus.]
[7. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER PRIMVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. POSITIO.]
[8. PROPOSITIO I.]
[9. PROPOSITIO II.]
[10. PROPOSITIO III.]
[11. PROPOSITIO IIII.]
[12. PROPOSITIO V.]
[13. PROPOSITIO VI.]
[14. PROPOSITIO VII.]
[15. POSITIO II.]
[16. COMMENTARIVS.]
[17. PROPOSITIO VIII.]
[18. COMMENTARIVS.]
[19. PROPOSITIO IX.]
[20. COMMENTARIVS.]
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="72">
          <pb file="0130" n="130" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">SIT cylindrus, uel cylindri po rtio a c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">plano per a-
              <lb/>
            xem ducto ſecetur; </s>
            <s xml:space="preserve">cuius ſectio ſit parallelogrammum a b
              <lb/>
            c d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">bifariam diuiſis a d, b c parallelogrammi lateribus,
              <lb/>
            per diuiſionum puncta e f planum baſi æquidiſtans duca-
              <lb/>
            tur; </s>
            <s xml:space="preserve">quod faciet ſectionem, in cy lindro quidem circulum
              <lb/>
            æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
              <lb/>
            in libro cylindricorum, propoſitione quinta: </s>
            <s xml:space="preserve">in cylindri
              <lb/>
            uero portione ellipſim æqualem, & </s>
            <s xml:space="preserve">ſimilem eis, quæ ſunt
              <lb/>
            in oppoſitis planis, quod nos
              <lb/>
              <anchor type="figure" xlink:label="fig-0130-01a" xlink:href="fig-0130-01"/>
            demonſtrauimus in commen
              <lb/>
            tariis in librum Archimedis
              <lb/>
            de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidi-
              <lb/>
            bus. </s>
            <s xml:space="preserve">Dico centrum grauita-
              <lb/>
            tis cylindri, uel cylindri por-
              <lb/>
            tionis eſſe in plano e f. </s>
            <s xml:space="preserve">Si enĩ
              <lb/>
            fieri poteſt, fit centrum g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            ducatur g h ipſi a d æquidi-
              <lb/>
            ſtans, uſque ad e f planum.
              <lb/>
            </s>
            <s xml:space="preserve">Itaque linea a e continenter
              <lb/>
            diuiſa bifariam, erit tandem
              <lb/>
            pars aliqua ipſius k e, minor
              <lb/>
            g h. </s>
            <s xml:space="preserve">Diuidantur ergo lineæ
              <lb/>
            a e, e d in partes æquales ipſi
              <lb/>
            k e: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per diuiſiones plana ba
              <lb/>
            ſibus æquidiſtantia ducãtur. </s>
            <s xml:space="preserve">
              <lb/>
            erunt iam ſectiones, figuræ æ-
              <lb/>
            quales, & </s>
            <s xml:space="preserve">ſimiles eis, quæ ſunt
              <lb/>
            in baſibus: </s>
            <s xml:space="preserve">atque erit cylindrus in cylindros diuiſus: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">cy
              <lb/>
            lindri portio in portiones æquales, & </s>
            <s xml:space="preserve">ſimiles ipſi k f. </s>
            <s xml:space="preserve">reli-
              <lb/>
            qua ſimiliter, ut ſuperius in priſmate concludentur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0130-01" xlink:href="fig-0130-01a">
              <image file="0130-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0130-01"/>
            </figure>
          </div>
        </div>
      </text>
    </echo>