Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
< >
page |< < (15) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3622" xml:space="preserve">
              <pb o="15" file="0143" n="143" rhead="DE CENTRO GRAVIT. SOLID."/>
              <figure xlink:label="fig-0143-01" xlink:href="fig-0143-01a" number="97">
                <image file="0143-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0143-01"/>
              </figure>
            ni portionem, ita eſt c_y_lindrus ad c_y_lindrum, uel c_y_lin-
              <lb/>
            dri portio ad c_y_lindri portionem: </s>
            <s xml:id="echoid-s3623" xml:space="preserve">& </s>
            <s xml:id="echoid-s3624" xml:space="preserve">ut p_y_ramis ad p_y_ra-
              <lb/>
            midem, ita priſma ad priſma, cum eadem ſit baſis, & </s>
            <s xml:id="echoid-s3625" xml:space="preserve">æqua
              <lb/>
            lis altitudo; </s>
            <s xml:id="echoid-s3626" xml:space="preserve">erit c_y_lindrus uel c_y_lindri portio x priſma-
              <lb/>
            ti _y_ æqualis. </s>
            <s xml:id="echoid-s3627" xml:space="preserve">eftq; </s>
            <s xml:id="echoid-s3628" xml:space="preserve">ut ſpacium g h ad ſpacium x, ita c_y_lin-
              <lb/>
            drus, uel c_y_lindri portio c e ad c_y_lindrum, uel c_y_lindri por-
              <lb/>
            tionem x. </s>
            <s xml:id="echoid-s3629" xml:space="preserve">Conſtatigitur c_y_lindrum uel c_y_lindri portionẽ
              <lb/>
            c e, ad priſina_y_, quippe cuius baſis eſt figura rectilinea in
              <lb/>
              <note position="right" xlink:label="note-0143-01" xlink:href="note-0143-01a" xml:space="preserve">7. quinti</note>
            ſpacio g h deſcripta, eandem proportionem habere, quam
              <lb/>
            ſpacium g h habet ad ſpacium x, hoc eſt ad dictam figuram.
              <lb/>
            </s>
            <s xml:id="echoid-s3630" xml:space="preserve">quod demonſtrandum fuerat.</s>
            <s xml:id="echoid-s3631" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div224" type="section" level="1" n="74">
          <head xml:id="echoid-head81" xml:space="preserve">THE OREMA IX. PROPOSITIO IX.</head>
          <p>
            <s xml:id="echoid-s3632" xml:space="preserve">Si pyramis ſecetur plano baſi æquidiſtante; </s>
            <s xml:id="echoid-s3633" xml:space="preserve">ſe-
              <lb/>
            ctio erit figura ſimilis ei, quæ eſt baſis, centrum
              <lb/>
            grauitatis in axe habens.</s>
            <s xml:id="echoid-s3634" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>