Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
page
|<
<
(30)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
30
"
file
="
0171
"
n
="
171
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
pra demonſtratum eſt, ita eſſe cylindrum, uel cylindri por-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0171-01a
"
xlink:href
="
note-0171-01
"/>
tionem ad priſina, cuius baſis rectilinea figura, & </
s
>
<
s
xml:space
="
preserve
">æqua-
<
lb
/>
lis altitudo. </
s
>
<
s
xml:space
="
preserve
">ergo per conuerſionem rationis, ut circulus,
<
lb
/>
uel ellipſis ad portiones, ita conus, uel coni portio ad por-
<
lb
/>
tiones ſolidas. </
s
>
<
s
xml:space
="
preserve
">quare conus uel coni portio ad portiones
<
lb
/>
ſolidas maiorem habet proportionem, quam g e ad e f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
diuidendo, pyramis ad portiones ſolidas maiorem pro-
<
lb
/>
portionem habet, quam g f ad f e. </
s
>
<
s
xml:space
="
preserve
">ſiat igitur q f ad f e
<
lb
/>
ut pyramis ad dictas portiones. </
s
>
<
s
xml:space
="
preserve
">Itaque quoniam à cono
<
lb
/>
uel coni portione, cuius grauitatis centrum eſt f, aufer-
<
lb
/>
tur pyramis, cuius centrum e; </
s
>
<
s
xml:space
="
preserve
">reliquæ magnitudinis,
<
lb
/>
quæ ex ſolidis portionibus conſtat, centrum grauitatis
<
lb
/>
erit in linea e f protracta, & </
s
>
<
s
xml:space
="
preserve
">in puncto q. </
s
>
<
s
xml:space
="
preserve
">quod fieri
<
lb
/>
non poteft: </
s
>
<
s
xml:space
="
preserve
">eſt enim centrum grauitatis intra. </
s
>
<
s
xml:space
="
preserve
">Conſtat
<
lb
/>
igitur coni, uel coni portionis grauitatis centrum eſſe pun
<
lb
/>
ctum e. </
s
>
<
s
xml:space
="
preserve
">quæ omnia demonſtrare oportebat.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
3
">
<
figure
xlink:label
="
fig-0170-01
"
xlink:href
="
fig-0170-01a
">
<
image
file
="
0170-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0170-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0171-01
"
xlink:href
="
note-0171-01a
"
xml:space
="
preserve
">8. huius</
note
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
88
">
<
head
xml:space
="
preserve
">THEOREMA XIX. PROPOSITIO XXIII.</
head
>
<
p
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvodlibet</
emph
>
fruſtum à pyramide, quæ
<
lb
/>
triangularem baſim habeat, abſciſſum, diuiditur
<
lb
/>
in tres pyramides proportionales, in ea proportio
<
lb
/>
ne, quæ eſt lateris maioris baſis ad latus minoris
<
lb
/>
ipſi reſpondens.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">Hoc demonſtrauit Leonardus Piſanus in libro, qui de-
<
lb
/>
praxi geometriæ inſcribitur. </
s
>
<
s
xml:space
="
preserve
">Sed quoniam is adhucim-
<
lb
/>
preſſus non eſt, nos ipſius demonſtrationem breuíter
<
lb
/>
perſtringemus, rem ipſam ſecuti, non uerba. </
s
>
<
s
xml:space
="
preserve
">Sit fru-
<
lb
/>
ſtum pyramidis a b c d e f, cuíus maior baſis triangulum
<
lb
/>
a b c, minor d e f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">iunctis a e, e c, c d, per line-
<
lb
/>
as a e, e c ducatur planum ſecans fruſtum: </
s
>
<
s
xml:space
="
preserve
">itemque per
<
lb
/>
lineas e c, c d; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">per c d, d a alia plana ducantur, quæ,
<
lb
/>
diuident fruſtum in tres pyramides a b c e, a d c e, d e f c.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>