Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Table of contents
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 97
[out of range]
>
page
|<
<
(29)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
87
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
29
"
file
="
0169
"
n
="
169
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
l h eandem habet proportionem, quam e m ad m k, uideli-
<
lb
/>
cet triplam. </
s
>
<
s
xml:space
="
preserve
">quare linea l m ipſam e f ſecabit in puncto g:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">etenim e g ad g f eſt, ut el ad l h. </
s
>
<
s
xml:space
="
preserve
">præterea quoniam h k, l m
<
lb
/>
æquidiſtant, erunt triangula h e f, l e g ſimilia: </
s
>
<
s
xml:space
="
preserve
">itemq; </
s
>
<
s
xml:space
="
preserve
">inter
<
lb
/>
ſe ſimilia f e k, g e m: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ut e fad e g, ita h fad l g: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ita f _K_ ad
<
lb
/>
g m. </
s
>
<
s
xml:space
="
preserve
">ergo uth fadlg, ita f k ad g m: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">permutando uth f
<
lb
/>
ad f _K_, ita l g ad g m. </
s
>
<
s
xml:space
="
preserve
">ſed cum h ſit centrum trianguli a b d; </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">K triãguli b c d: </
s
>
<
s
xml:space
="
preserve
">punctũ uero f totius quadrilateri a b c d
<
lb
/>
centrum: </
s
>
<
s
xml:space
="
preserve
">erit ex 8. </
s
>
<
s
xml:space
="
preserve
">Archimedis de centro grauitatis plano
<
lb
/>
rum h fad f
<
emph
style
="
sc
">K</
emph
>
, ut triangulum b c d ad triangulum a b d: </
s
>
<
s
xml:space
="
preserve
">ut
<
lb
/>
autem b c d triangulum ad triangulum a b d, ita pyramis
<
lb
/>
b c d e ad pyramidem a b d e. </
s
>
<
s
xml:space
="
preserve
">ergo
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0169-01a
"
xlink:href
="
fig-0169-01
"/>
linea lg ad g m erit, ut pyramis
<
lb
/>
b c d e ad pyramidé a b d e. </
s
>
<
s
xml:space
="
preserve
">ex quo
<
lb
/>
ſequitur, ut totius pyramidis
<
lb
/>
a b c d e punctum g ſit grauitatis
<
lb
/>
centrum. </
s
>
<
s
xml:space
="
preserve
">Rurſus ſit pyramis ba-
<
lb
/>
ſim habens pentagonum a b c d e:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axem f g: </
s
>
<
s
xml:space
="
preserve
">diuidaturq; </
s
>
<
s
xml:space
="
preserve
">axis in pũ
<
lb
/>
cto h, ita ut fh ad h g triplam habe
<
lb
/>
at proportionem. </
s
>
<
s
xml:space
="
preserve
">Dico h grauita-
<
lb
/>
tis centrũ eſſe pyramidis a b c d e f. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
iungatur enim e b: </
s
>
<
s
xml:space
="
preserve
">intelligaturq; </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
pyramis, cuius uertex f, & </
s
>
<
s
xml:space
="
preserve
">baſis
<
lb
/>
triangulum a b e: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">alia pyramis
<
lb
/>
intelligatur eundem uerticem ha-
<
lb
/>
bens, & </
s
>
<
s
xml:space
="
preserve
">baſim b c d e quadrilaterũ: </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
ſit autem pyramidis a b e faxis f
<
emph
style
="
sc
">K</
emph
>
,
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">grauitatis centrum l: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">pyrami
<
lb
/>
dis b c d e faxis f m, & </
s
>
<
s
xml:space
="
preserve
">centrum gra
<
lb
/>
uitatis n: </
s
>
<
s
xml:space
="
preserve
">iunganturq; </
s
>
<
s
xml:space
="
preserve
">
<
emph
style
="
sc
">K</
emph
>
m, l n; </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
quæ per puncta g h tranſibunt. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
Rurſus eodem modo, quo ſup ra,
<
lb
/>
demonſtrabimus lineas K g m, l h n ſibiipſis æ quidiſtare</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>