Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[21.] ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.
[22.] PROPOSITIO II.
[23.] COMMENTARIVS.
[24.] PROPOSITIO III.
[25.] PROPOSITIO IIII.
[26.] COMMENTARIVS.
[27.] PROPOSITIO V.
[28.] COMMENTARIVS.
[29.] PROPOSITIO VI.
[30.] COMMENTARIVS.
[31.] LEMMAI.
[32.] LEMMA II.
[33.] LEMMA III.
[34.] LEMMA IIII.
[35.] PROPOSITIO VII.
[36.] PROPOSITIO VIII.
[37.] COMMENTARIVS.
[38.] PROPOSITIO IX.
[39.] COMMENTARIVS.
[40.] PROPOSITIO X.
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
< >
page |< < of 213 > >|
122FED. COMMANDINI teſt in portione, quæ recta linea & obtuſianguli coni ſe-
ctione, ſeu hyperbola continetur.
THE OREMA IIII. PROPOSITIO IIII.
In circulo & ellipſiidem eſt figuræ & graui-
tatis centrum.
SIT circulus, uel ellipſis, cuius centrum a. Dico a gra-
uitatis quoque centrum eſſe.
Si enim fieri poteſt, ſit b cen-
trum grauitatis:
& iuncta a b extra figuram in c produca
tur:
quam uero proportionem habetlinea c a ad a b, ha-
beat circulus a ad alium circulum, in quo d;
aliam ellipſim:
& in circulo, uel ellipſi ſigura rectilinea pla-
ne deſcribatur adeo, ut tandem relinquantur portiones
quædam minores circulo, uel ellipſid;
quæ figura ſit e f g
h _k_ l m n.
Illud uero in circulo fieri poſſe ex duodecimo
elementorum libro, propoſitione ſecunda manifeſte con-
ſtat;
at in ellipſi nos demonſtra-
uinius in commentariis in quin-
tam propoſitionem Archimedis
de conoidibus, &
ſphæroidibus.
erit igitur a centrum grauitatis
ipſius figuræ, quod proxime oſtē
dimus.
Itaque quoniam circulus
a ad circulum d;
uel ellipſis a ad
ellipſim d eandem proportionē
habet, quam linea c a ad a b:

portiones uero ſunt minores cir
118. quinti. culo uel ellipſi d:
habebit circu-
lus, uel ellipſis ad portiones ma-
iorem proportionem, quàm c a
2219. quinti
apud Cã
panum.