Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[31.] LEMMAI.
[32.] LEMMA II.
[33.] LEMMA III.
[34.] LEMMA IIII.
[35.] PROPOSITIO VII.
[36.] PROPOSITIO VIII.
[37.] COMMENTARIVS.
[38.] PROPOSITIO IX.
[39.] COMMENTARIVS.
[40.] PROPOSITIO X.
[41.] COMMENTARIVS.
[42.] LEMMA I.
[43.] LEMMA II.
[44.] LEMMA III.
[45.] LEMMA IIII.
[46.] LEMMA V.
[47.] LEMMA VI.
[48.] II.
[49.] III.
[50.] IIII.
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
< >
page |< < (11) of 213 > >|
3311DE IIS QVAE VEH. IN AQVA. cundum eam, quæ per g, deorſum ferctur; & non ita mane
bit ſolidum a p o l:
nam quod eſt ad a feretur ſurſum; &
quod ad b deorſum, donec n o ſecundum perpendicu-
larem conſtituatur.
]
COMMENTARIVS.
D_esideratvr_ propoſitionis huius demonstratio, quam nos
etiam ad Archimedis figuram appoſite restituimus, commentarijs-
que illustrauimus.
_Recta portio conoidis rectanguli, quando axem habue_
11A _rit minorem, quàm ſeſquialterum eius, quæ uſque ad axẽ]_
In tranſlatione mendoſe legebatur.
maiorem quàm ſeſquialterum:
& ita legebatur in ſequenti propoſitione. est autem recta portio co
noidis, quæ plano ad axem recto abſcinditur:
eâmque rectam tunc
conſiſtere dicimus, quando planum abſcindens, uidelicet baſis pla-
num, ſuperficiei humidi æquidiſtans fuerit.
Quæ erit ſectionis i p o s diameter, & axis portionis in
22B humido demerſæ] _ex_ 46 _primi conicorum Apollonij:
uel ex co-_
_rollario_ 51 _eiuſdem_.
_Sitque ſolidæ magnitudinis a p o l grauitatis centrum r,_
33C _ipſius uero i p o s centrum ſit b.
]_ Portionis enim conoidis
rectanguli centrum grauitatis eſt in axe, quem ita diuidit, ut pars
eius, quæ ad uerticem terminatur, reliquæ partis, quæ ad baſim, ſit
dupla:
quod nos in libro de centro grauitatis ſolidorum propoſitio-
ne 29 demonstrauimus.
Cum igitur portionis a p o l centrum gra-
uitatis ſit r, erit o r dupla r n:
& propterea n o ipſius o r ſeſqui-
altera.
Eadem ratione b centrum grauitatis portionis i p o s est in
axe p f, ita ut p b dupla ſit b f.
_Etiuncta b r producatur ad g, quod ſit centrum graui_
44D _tatis reliquæ figuræ i s l a]_ Si enim linea b r in g producta, ha
beat g r ad r b proportionem eam, quam conoidis portio i p o s ad
reliquam figuram, quæ ex humidi ſuperficie extat:
erit punctum g
ipſius grauitatis centrum, ex octaua Archimedis.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index