Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
< >
page |< < of 213 > >|
204FED. COMMANDINI ioris baſis ad quadratum minoris: centrum ſit in
eo axis puncto, quo ita diuiditur ut pars, quæ mi
norem baſim attingit ad alteram partem eandem
proportionem habeat, quam dempto quadrato
minoris baſis à duabus tertiis quadrati maioris,
habet id, quod reliquum eſt unà cum portione à
tertia quadrati maioris parte dempta, ad reliquà
eiuſdem tertiæ portionem.
SIT fruſtum à portione rectanguli conoidis abſciſſum
a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
trum b c, minor circa diametrum a d;
& axis e f. deſcriba-
tur autem portio conoidis, à quo illud abſciſſum eſt, &
pla-
150[Figure 150] no per axem ducto ſecetur;
ut ſuperficiei ſectio ſit parabo-
le b g c, cuius diameter, &
axis portionis g f: deinde g f diui
datur in puncto h, ita ut g h ſit dupla h f:
& rurſus g e in ean
dem proportionem diuidatur:
ſitq; g _k_ ipſius k e dupla.
ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
uitatis portionis b g c eſſe h punctum:
& portionis a g c
punctum k.
ſumpto igitur infra h punctol, ita ut k h ad h

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index