Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[51.] V.
[52.] DEMONSTRATIO SECVNDAE PARTIS.
[53.] COMMENTARIVS.
[54.] DEMONSTRATIO TERTIAE PARTIS.
[55.] COMMENTARIVS.
[56.] DEMONSTRATIO QVARTAE PARTIS.
[57.] DEMONSTRATIO QVINT AE PARTIS.
[58.] FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.
[59.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.
[60.] CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
< >
page |< < (43) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div175" type="section" level="1" n="55">
          <pb o="43" file="0097" n="97" rhead="DE I _IS_ QVAE VEH. IN AQVA."/>
        </div>
        <div xml:id="echoid-div182" type="section" level="1" n="56">
          <head xml:id="echoid-head61" xml:space="preserve">DEMONSTRATIO QVARTAE PARTIS.</head>
          <p>
            <s xml:id="echoid-s2560" xml:space="preserve">HABEAT rurſum portio ad humidum in grauitate
              <lb/>
            proportionem quidem maiorem, quàm quadratum f p ad
              <lb/>
            quadratum b d; </s>
            <s xml:id="echoid-s2561" xml:space="preserve">minorem uero, quàm quadratum x o ad
              <lb/>
            b d quadratum: </s>
            <s xml:id="echoid-s2562" xml:space="preserve">& </s>
            <s xml:id="echoid-s2563" xml:space="preserve">quam proportionem habet portio ad
              <lb/>
            humidum in grauitate, eandem habeat quadratum, quod
              <lb/>
            fit à linea ψ ad quadratum b d. </s>
            <s xml:id="echoid-s2564" xml:space="preserve">erit ψ maior, quàm f p, & </s>
            <s xml:id="echoid-s2565" xml:space="preserve">mi
              <lb/>
            nor, quàm x o. </s>
            <s xml:id="echoid-s2566" xml:space="preserve">aptetur ergo quæ dam rectalinea i u inter
              <lb/>
            portiones a u q l, a x d interiecta, quæ ſit æqualis ψ, & </s>
            <s xml:id="echoid-s2567" xml:space="preserve">ipſi
              <lb/>
            b d æquidiſtans: </s>
            <s xml:id="echoid-s2568" xml:space="preserve">occurratq; </s>
            <s xml:id="echoid-s2569" xml:space="preserve">reliquæ ſectioni in y. </s>
            <s xml:id="echoid-s2570" xml:space="preserve">rurſus
              <lb/>
            u y dupla ipſius y i demonſtrabitur, ſicuti demonſtrata eſt
              <lb/>
            o g ipſius g x dupla. </s>
            <s xml:id="echoid-s2571" xml:space="preserve">ducatur autem ab u linea u ο, quæ ſe
              <lb/>
            ctionem a u q l in u contingat: </s>
            <s xml:id="echoid-s2572" xml:space="preserve">& </s>
            <s xml:id="echoid-s2573" xml:space="preserve">iuncta a i ad q produca
              <lb/>
            tur. </s>
            <s xml:id="echoid-s2574" xml:space="preserve">eodem modo oſtendemus lineam a i ipſi i q æqualem
              <lb/>
            eſſe: </s>
            <s xml:id="echoid-s2575" xml:space="preserve">& </s>
            <s xml:id="echoid-s2576" xml:space="preserve">a q ipſi
              <lb/>
              <figure xlink:label="fig-0097-01" xlink:href="fig-0097-01a" number="63">
                <image file="0097-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0097-01"/>
              </figure>
            u ω æquidiſtan-
              <lb/>
            tem. </s>
            <s xml:id="echoid-s2577" xml:space="preserve">Demon-
              <lb/>
            ſtrãdum eſt por
              <lb/>
            tionem in humi
              <lb/>
            dum demiſſam,
              <lb/>
            ĩclinatãq; </s>
            <s xml:id="echoid-s2578" xml:space="preserve">adeo,
              <lb/>
            ut baſis ipſius
              <lb/>
            non contingat
              <lb/>
            humidũ, ita con
              <lb/>
            ſiſtere, ut baſis
              <lb/>
            in humidũ ma-
              <lb/>
            gis demergatur
              <lb/>
            quam ut in uno
              <lb/>
            puncto eius ſu-
              <lb/>
            perficiem cõtin
              <lb/>
            gat. </s>
            <s xml:id="echoid-s2579" xml:space="preserve">Demittatur enim in humidum, ut dictum eſt; </s>
            <s xml:id="echoid-s2580" xml:space="preserve">& </s>
            <s xml:id="echoid-s2581" xml:space="preserve">iaceat
              <lb/>
            primo ſic inclinata, ut baſis nullo modo contingat ſuperfi-
              <lb/>
            ciem humidi. </s>
            <s xml:id="echoid-s2582" xml:space="preserve">ſecta autem ipſa plano per axem ad </s>
          </p>
        </div>
      </text>
    </echo>