Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
< >
page |< < (5) of 213 > >|
1215DE CENTRO GRAVIT. SOLID. quo ſcilicet ln, om conueniunt. Poſtremo in figura
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, &
trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k:
& trapeziorũ
b r u d, r m n u in k φ:
& denique trapezii m s t n; & triangu
li s c t in φ c.
quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit.
Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ:
trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ:
trapeziiq; o x u n, & trianguli
x d u centrum in ψ d.
totius ergo magnitudinis centrum
eſtin linea b d.
ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.
THE OREMA III. PROPOSITIO III.
Cuiuslibet portio-
77[Figure 77] nis circuli, &
ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.
HOC eodem prorſus
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, &
rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis.
Etita demonſtrari po
77[Handwritten note 7]

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index