Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61.] ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.
[62.] FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.
[63.] PETITIONES.
[64.] THEOREMA I. PROPOSITIO I.
[65.] THEOREMA II. PROPOSITIO II.
[66.] THE OREMA III. PROPOSITIO III.
[67.] THE OREMA IIII. PROPOSITIO IIII.
[68.] ALITER.
[69.] THEOREMA V. PROPOSITIO V.
[70.] COROLLARIVM.
[71.] THEOREMA VI. PROPOSITIO VI.
[72.] THE OREMA VII. PROPOSITIO VII.
[73.] THE OREMA VIII. PROPOSITIO VIII.
[74.] THE OREMA IX. PROPOSITIO IX.
[75.] PROBLEMA I. PROPOSITIO X.
[76.] PROBLEMA II. PROPOSITIO XI.
[77.] PROBLEMA III. PROPOSITIO XII.
[78.] PROBLEMA IIII. PROPOSITIO XIII.
[79.] THEOREMA X. PROPOSITIO XIIII.
[80.] THE OREMA XI. PROPOSITIO XV.
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
< >
page |< < (21) of 213 > >|
5321DE IIS QVAE VEH. IN AQVA.
Producatur enim u s ad lineam qm in x: & à puncto x duca
tur ad diametrum x y ipſi bd æquidistans.
erit gt minor quàm
gy, quoniam u s minor eſt quàm ux:
& ex primo lemmate yg
ad uc erit, ut h g ad n c;
uidelicet ut g b ad c k, quod proxime de
monstrauimus:
& permutando yg ad gb, ut uc ad c k. Sed t g
cum ſit ipſa y g minor, habet ad g b proportionem minorem, quàm
y g ad eandem.
ergo u c ad c K maiorem proportioné habet, quàm
t g ad g b.
quod demonstraſſe oportuit. Itaque poſitione data g K
unum duntaxat erit in ſectione punctum, uidelicet m, à quo ductis
duabus lineis m e h, mno, habeat n c ad c K proportionem ean-
dem, quam h g ad g b.
nam ſi ab alijs omnibus ducantur, ſemper
ea, quæ inter a c, &
lineam ipſi æquidistantem interijcitur, ad c K
proportionem maiorem habebit, quàm quæ inter g K atque ei æqui
diſtantem, ad ipſam g b.
Conſtat igitur id, quod ab Archimede di-
ctum est;
nempe lineam pi ad p h uel eandem, quam n ω ad ω o,
uel maiorem habere proportionem.
Quare p h ipſius h i aut dupla eſt, aut minor quàm du
11Dpla.
] _Si quidé_
33[Figure 33] _minor, quàm du-_
_pla, ſit pt dupl.
2_
_ti.
erit centrum_
_grauitatis eius,_
_quod in humido_
_est, punctumt.
ſi_
_uero p h ſit ip-_
_ſius h i dupla,_
_erit h grauitatis_
_centrum:
ductâq;_
_h f, & producta_
_ad centrum eius,_
_quod est extra humidum, uidelicct ad g, alia ſimiliter demonstra-_
_buntur.
atque idem intelligendum est in propoſitione, quæ ſe_-
_quitur._
Reuoluetur ergo ſolidum a p o l, & baſis ipſius nullo
22E

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index