Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
< >
page |< < (4) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="65">
          <p>
            <s xml:space="preserve">
              <pb o="4" file="0119" n="119" rhead="DE CENTRO GRAVIT. SOLID."/>
            o n ipſi a c. </s>
            <s xml:space="preserve">Quoniam enim triangulorum a b k, a d k, latus
              <lb/>
            b k eſt æquale lateri k d, & </s>
            <s xml:space="preserve">a k utrique commune; </s>
            <s xml:space="preserve">anguliq́;
              <lb/>
            </s>
            <s xml:space="preserve">ad k recti baſis a b baſi a d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">reliqui anguli reliquis an-
              <lb/>
              <anchor type="note" xlink:label="note-0119-01a" xlink:href="note-0119-01"/>
            gulis æquales erunt. </s>
            <s xml:space="preserve">eadem quoqueratione oſtendetur b c
              <lb/>
            æqualis c d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a b ipſi
              <lb/>
              <anchor type="figure" xlink:label="fig-0119-01a" xlink:href="fig-0119-01"/>
            b c. </s>
            <s xml:space="preserve">quare omnes a b,
              <lb/>
            b c, c d, d a ſunt æqua-
              <lb/>
            les. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam anguli
              <lb/>
            ad a æquales ſunt angu
              <lb/>
            lis ad c; </s>
            <s xml:space="preserve">erunt anguli b
              <lb/>
            a c, a c d coalterni inter
              <lb/>
            ſe æquales; </s>
            <s xml:space="preserve">itemq́; </s>
            <s xml:space="preserve">d a c,
              <lb/>
            a c b. </s>
            <s xml:space="preserve">ergo c d ipſi b a;
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a d ipſi b c æquidi-
              <lb/>
            ſtat. </s>
            <s xml:space="preserve">Atuero cum lineæ
              <lb/>
            a b, c d inter ſe æquidi-
              <lb/>
            ſtantes bifariam ſecen-
              <lb/>
            tur in punctis e g; </s>
            <s xml:space="preserve">erit li
              <lb/>
            nea l e k g n diameter ſe
              <lb/>
            ctionis, & </s>
            <s xml:space="preserve">linea una, ex
              <lb/>
            demonſtratis in uigeſi-
              <lb/>
            ma octaua ſecundi coni
              <lb/>
            corum. </s>
            <s xml:space="preserve">Et eadem ratione linea una m f k h o. </s>
            <s xml:space="preserve">Sunt autẽ a d,
              <lb/>
            b c inter ſe ſe æquales, & </s>
            <s xml:space="preserve">æquidiſtantes. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">earum di-
              <lb/>
            midiæ a h, b f; </s>
            <s xml:space="preserve">itemq́; </s>
            <s xml:space="preserve">h d, f e; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quæ ipſas coniunguntrectæ
              <lb/>
              <anchor type="note" xlink:label="note-0119-02a" xlink:href="note-0119-02"/>
            lineæ æquales, & </s>
            <s xml:space="preserve">æquidiſtantes erunt. </s>
            <s xml:space="preserve">æquidiſtãt igitur b a,
              <lb/>
            c d diametro m o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pariter a d, b c ipſi l n æquidiſtare o-
              <lb/>
            ſtendemus. </s>
            <s xml:space="preserve">Si igitur manẽte diametro a c intelligatur a b c
              <lb/>
            portio ellipſis ad portionem a d c moueri, cum primum b
              <lb/>
            applicuerit ad d, cõgruet tota portio toti portioni, lineaq́;
              <lb/>
            </s>
            <s xml:space="preserve">b a lineæ a d; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b c ipſi c d congruet: </s>
            <s xml:space="preserve">punctum uero e ca-
              <lb/>
            det in h; </s>
            <s xml:space="preserve">f in g: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">linea k e in lineam k h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">k f in k g. </s>
            <s xml:space="preserve">qua
              <lb/>
            re & </s>
            <s xml:space="preserve">el in h o, et fm in g n. </s>
            <s xml:space="preserve">Atipſa lz in z o; </s>
            <s xml:space="preserve">et m φ in φ n
              <lb/>
            cadet. </s>
            <s xml:space="preserve">congruet igitur triangulum l k z triangulo o k z: </s>
            <s xml:space="preserve">et</s>
          </p>
        </div>
      </text>
    </echo>