Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
< >
page |< < (2) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="9">
          <p>
            <s xml:space="preserve">
              <pb o="2" file="0015" n="15" rhead="DE IIS QVAE VEH. IN AQVA."/>
            loq; </s>
            <s xml:space="preserve">lineæ ſumptæ circulus deſcribatur. </s>
            <s xml:space="preserve">cadet ergo ipſius
              <lb/>
            circunferentia partim
              <lb/>
              <anchor type="figure" xlink:label="fig-0015-01a" xlink:href="fig-0015-01"/>
            extra lineam a b c d, par
              <lb/>
            tim intra; </s>
            <s xml:space="preserve">quoniam ea,
              <lb/>
            quæ ex centro quibuſ-
              <lb/>
            dam quidem à puncto
              <lb/>
            k ad ipſam ductis eſtma
              <lb/>
            ior; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quibuſdam mi-
              <lb/>
            nor. </s>
            <s xml:space="preserve">Itaq; </s>
            <s xml:space="preserve">ſit circuli de-
              <lb/>
            ſcripti circunferentia
              <lb/>
            fb h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ex b ad k ducta
              <lb/>
            linea, iungãtur fk k h e,
              <lb/>
            quæ angulos æquales faciant. </s>
            <s xml:space="preserve">deſcribatur autem & </s>
            <s xml:space="preserve">ex cen
              <lb/>
            tro k circunferentia quædam x o p in plano, & </s>
            <s xml:space="preserve">in humido.
              <lb/>
            </s>
            <s xml:space="preserve">ergo partes humidi, quæ ſunt ad circunferentiam x o p æ-
              <lb/>
            qualiter iacent, ac continuatæ inter ſe ſe: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">premũtur qui
              <lb/>
            dem partes, quæ ad x o circunferentiam, humido, quod lo
              <lb/>
            co a b continetur: </s>
            <s xml:space="preserve">quæ uero ad circunferentiam o p pre-
              <lb/>
            muntur humido, quod continetur b e. </s>
            <s xml:space="preserve">inæqualiter igitur
              <lb/>
            premuntur partes humidi ad cir cunferentiã x o, & </s>
            <s xml:space="preserve">ad o p. </s>
            <s xml:space="preserve">
              <lb/>
            quare minus preſſæ à magis presſis expellentur. </s>
            <s xml:space="preserve">non er-
              <lb/>
            go conſiſtet humidum. </s>
            <s xml:space="preserve">Atqui ponebatur conſiſtens, & </s>
            <s xml:space="preserve">ma
              <lb/>
            nens. </s>
            <s xml:space="preserve">neceſſarium eſt igitur lineam a b c d eſſe circuli cir
              <lb/>
            cunferentiam, cuius centrum k. </s>
            <s xml:space="preserve">Similiter autem demon-
              <lb/>
            ſtrabitur, & </s>
            <s xml:space="preserve">ſi quomodocunque aliter ſuperficies humidi
              <lb/>
            plano ſecta fuerit per centrum terræ ſectionem circuli cir
              <lb/>
            cunferentiam eſſe: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">centrum ipſius eſſe, quod & </s>
            <s xml:space="preserve">terræ cen
              <lb/>
            trum. </s>
            <s xml:space="preserve">Ex quibus conſtat ſuperficiem humidi conſiſtentis,
              <lb/>
              <anchor type="note" xlink:label="note-0015-01a" xlink:href="note-0015-01"/>
            atque manentis ſphæricam eſſe: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">eius ſphæræ centrum
              <lb/>
            idem, quod centrum terræ: </s>
            <s xml:space="preserve">quoniam eiuſmodi eſt, ut ſecta
              <lb/>
            per idem ſemper punctum ſectionem faciat circuli circun
              <lb/>
            ferentiam, centrum habentis punctum illud, per quod ipſa
              <lb/>
            plano ſecatur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0015-01" xlink:href="fig-0015-01a">
              <image file="0015-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0015-01"/>
            </figure>
            <note position="right" xlink:label="note-0015-01" xlink:href="note-0015-01a" xml:space="preserve">Prima hu
              <lb/>
            ius.</note>
          </div>
        </div>
      </text>
    </echo>