Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
[91. THEOREMA XXI. PROPOSITIO XXVI.]
[92. THEOREMA XXII. PROPOSITIO XXVII.]
[93. PROBLEMA VI. PROPOSITIO XX VIII.]
[94. THE OREMA XXIII. PROPOSITIO XXIX.]
[95. THEOREMA XXIIII. PROPOSITIO XXX.]
[96. THEOREMA XXV. PROPOSITIO XXXI.]
[97. FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.]
< >
page |< < (36) of 213 > >|
DE CENTRO GRAVIT. SOLID.
grauitatis magnitudinis, quæ ex utriſque pyramidibus cõ
ſtat;
hoc eſt ipſius fruſti. Sed fruſti centrum eſt etiam in a-
xe g h.
ergo in puncto φ, in quo lineæ z u, g h conueniunt.
Itaque u φ ad φ z eam proportionem habet, quam pyramis
8. prim I
libri Ar-
chimedis
de cẽtro
grauita-
tis plano
runi
b c f e d ad pyramidem a b c d.
& componendo u z ad z φ
eam habet, quam fruſtum ad pyramidem a b c d.
Vtuero
u z ad z φ, ita o p ad p φ ob ſimilitudinem triangulorum,
u o φ, z p φ.
quare o p ad p φ eſt ut fruſtum ad pyramidem
a b c d.
ſed ita erat o p ad p q. æquales igitur ſunt p φ, p q: &
7. quinti.q φ unum atque idem punctum.
ex quibus ſequitur lineam
z u ſecare o p in q:
& propterea pũctum q ipſius fruſti gra-
uitatis centrum eſſe.
Sit fruſtum a g à pyramide, quæ quadrangularem baſim
habeat abſciſſum, cuius maior baſis a b c d, minor e f g h,
&
axis k l. diuidatur autem primũ _k_ l, ita ut quam propor-
tionem habet duplum lateris a b unà cum latere e f ad du
plum lateris e f unà cum a b;
habeat k m ad m l. deinde à
púcto m ad k ſumatur quarta pars ipſius m k, quæ ſit m n.
& rurſus ab l ſumatur quarta pars totius axis l k, quæ ſit
l o.
poſtremo fiat o n ad n p, ut fruſtum a g ad pyramidẽ,
cuius baſis ſit eadem, quæ fruſti, &
altitudo æqualis. Dico
punctum p fruſti a g grauitatis centrum eſſe.
ducantur
enim a c, e g:
& intelligantur duo fruſta triangulares ba-
ſes habentia, quorum alterum l f ex baſibus a b c, e f g cõ-
ſtet;
alterum l h ex baſibus a c d, e g h. Sitq; fruſti l f axis
q r;
in quo grauitatis centrum s: fruſti uero l h axis t u, &
x grauitatis centrum:
deinde iungantur u r, t q, x s. tranſi-
bit u r per l:
quoniam l eſt centrum grauitatis quadran-
guli a b c d:
& puncta r u grauitatis centra triangulorum
a b c, a c d;
in quæ quadrangulum ipſum diuiditur. eadem
quoque ratione t q per punctum _k_ tranſibit.
At uero pro
portiones, ex quibus fruſtorum grauitatis centra inquiri-
mus, eædem ſunt in toto ſruſto a g, &
in fruſtis l f, l h. Sunt
enim per octauam huius quadrilatera a b c d, e f g h ſimilia:

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index