Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < of 213 > >|
146FED. COMMANDINI partes d. in pyramide igitur inſcripta erit quædam figura,
ex priſinatibus æqualem altitudinem habentibus cóſtans,
ad partes e:
& altera circumſcripta ad partes d. Sed unum-
quodque eorum priſmatum, quæ in figura inſcripta conti-
nentur, æquale eſt priſmati, quod ab eodem fit triangulo in
figura circumſcripta:
nam priſma p q priſmati p o eſt æ-
quale;
priſma s t æquale priſmati s r; priſma x y priſmati
x u;
priſma η θ priſinati η z; priſina μ ν priſmati μ λ; priſ-
ma ρ σ priſmati ρ π;
& priſma φ χ priſinati φ τ æquale. re-
linquitur ergo, ut circumſcripta figura exuperet inſcriptã
priſmate, quod baſim habet a b c triangulum, &
axem e f.
Illud uero minus eſt ſolida magnitudine propoſita. Eadȩ
ratione inſcribetur, &
circumſcribetur ſolida figura in py-
ramide, quæ quadrilateram, uel plurilaterã baſim habeat.
PROBLEMA II. PROPOSITIO XI.
Dato cono, fieri poteſt, ut figura ſolida in-
ſcribatur, &
altera circumſcribatur ex cylindris
æqualem habentibus altitudinem, ita ut circum-
ſcripta ſuperet inſcriptam, magnitudine, quæ ſo-
lida magnitudine propoſita ſit minor.
SIT conus, cuius axis b d: & ſecetur plano per axem
ducto, ut ſectio ſit triangulum a b c:
intelligaturq; cylin-
drus, qui baſim eandem, &
eundem axem habeat. Hoc igi-
tur cylindro continenter bifariam ſecto, relinquetur cylin
drus minor ſolida magnitudine propoſita.
Sit autem is cy
lindrus, qui baſim habet circulum circa diametrum a c, &

axem d e.
Itaque diuidatur b d in partes æquales ipſi d e
in punctis f g h _K_lm:
& per ea ducantur plana conum ſe-
cantia;
quæ baſi æquidiſtent. erunt ſectiones circuli, cen-
tra in axi habentes, ut in primo libro conicorum,

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index