Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

< >
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < of 213 > >|
180FED. COMMANDINI fruſtum a d. Sed pyramis q æqualis eſt fruſto à pyramide
abſciſſo, ut dem onſtrauimus.
ergo & conus, uel coni por-
tio q, cuius baſis ex tribus circulis, uel ellipſibus a b, e f, c d
conſtat, &
altitudo eadem, quæ fruſti: ipſi fruſto a d eſt æ-
qualis.
atque illud eſt, quod demonſtrare oportebat.
THEOREMA XXI. PROPOSITIO XXVI.
Cvivslibet fruſti à pyramide, uel cono,
uel coni portione abſcisſi, centrum grauitatis eſt
in axe, ita ut eo primum in duas portiones diui-
ſo, portio ſuperior, quæ minorem baſim attingit
ad portionem reliquam eam habeat proportio-
nem, quam duplum lateris, uel diametri maioris
baſis, vnà cum latere, uel diametro minoris, ipſi
reſpondente, habet ad duplum lateris, uel diame-
tri minoris baſis vnà cũ latere, uel diametro ma-
ioris:
deinde à puncto diuiſionis quarta parte ſu
perioris portionis in ipſa ſumpta:
& rurſus ab in-
ferioris portionis termino, qui eſt ad baſim maio
rem, ſumpta quarta parte totius axis:
centrum ſit
in linea, quæ his finibus continetur, atque in eo li
neæ puncto, quo ſic diuiditur, ut tota linea ad par
tem propinquiorem minori baſi, eãdem propor-
tionem habeat, quam fruſtum ad pyramidẽ, uel
conum, uel coni portionem, cuius baſis ſit ea-
dem, quæ baſis maior, &
altitudo fruſti altitudini
æqualis.