Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[81.] THE OREMA XII. PROPOSITIO XVI.
[82.] THE OREMA XIII. PROPOSITIO XVII.
[83.] THEOREMA XIIII. PROPOSITIO XVIII.
[84.] THEOREMA XV. PROPOSITIO XIX.
[85.] THE OREMA XVI. PROPOSITIO XX.
[86.] THEOREMA XVII. PROPOSITIO XXI.
[87.] THE OREMA XVIII. PROPOSITIO XXII.
[88.] THEOREMA XIX. PROPOSITIO XXIII.
[89.] PROBLEMA V. PROPOSITIO XXIIII.
[90.] THEOREMA XX. PROPOSITIO XXV.
[91.] THEOREMA XXI. PROPOSITIO XXVI.
[92.] THEOREMA XXII. PROPOSITIO XXVII.
[93.] PROBLEMA VI. PROPOSITIO XX VIII.
[94.] THE OREMA XXIII. PROPOSITIO XXIX.
[95.] THEOREMA XXIIII. PROPOSITIO XXX.
[96.] THEOREMA XXV. PROPOSITIO XXXI.
[97.] FINIS LIBRI DE CENTRO GRAVITATIS SOLIDORVM.
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div247" type="section" level="1" n="85">
          <p>
            <s xml:id="echoid-s4067" xml:space="preserve">
              <pb file="0164" n="164" rhead="FED. COMMANDINI"/>
            qr, eodem, quo ſupra, modo oſtendemns f g ad p q, ut f h
              <lb/>
            ad p r. </s>
            <s xml:id="echoid-s4068" xml:space="preserve">ſed priſma a e ad ipſum k o eſt, ut f h ad p r. </s>
            <s xml:id="echoid-s4069" xml:space="preserve">ergo
              <lb/>
            & </s>
            <s xml:id="echoid-s4070" xml:space="preserve">ut f g axis ad axem p q. </s>
            <s xml:id="echoid-s4071" xml:space="preserve">ex quibus fit, ut pyramis a b c d f
              <lb/>
            ad pyrami-
              <lb/>
              <figure xlink:label="fig-0164-01" xlink:href="fig-0164-01a" number="120">
                <image file="0164-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0164-01"/>
              </figure>
            dẽ k l m n p
              <lb/>
            eandem-ha
              <lb/>
            beat pro-
              <lb/>
            portionẽ,
              <lb/>
            quãaxis ad
              <lb/>
            axẽ. </s>
            <s xml:id="echoid-s4072" xml:space="preserve">quod
              <lb/>
            demonſtrã
              <lb/>
            dũ fuerat.</s>
            <s xml:id="echoid-s4073" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4074" xml:space="preserve">Simili ra
              <lb/>
            tione in a-
              <lb/>
            liis priſma-
              <lb/>
            tibus & </s>
            <s xml:id="echoid-s4075" xml:space="preserve">py
              <lb/>
            ramidibus eadem demonſtrabuntur.</s>
            <s xml:id="echoid-s4076" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div252" type="section" level="1" n="86">
          <head xml:id="echoid-head93" xml:space="preserve">THEOREMA XVII. PROPOSITIO XXI.</head>
          <p>
            <s xml:id="echoid-s4077" xml:space="preserve">Priſmata omnia, & </s>
            <s xml:id="echoid-s4078" xml:space="preserve">pyramides inter ſe propor
              <lb/>
            tionem habent compoſitam ex proportione ba-
              <lb/>
            ſium, & </s>
            <s xml:id="echoid-s4079" xml:space="preserve">proportione altitudinum.</s>
            <s xml:id="echoid-s4080" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4081" xml:space="preserve">Sint duo priſmata a e, g m: </s>
            <s xml:id="echoid-s4082" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s4083" xml:space="preserve">priſmatis a e baſis qua
              <lb/>
            drilaterum a b c d, & </s>
            <s xml:id="echoid-s4084" xml:space="preserve">altitudo e f: </s>
            <s xml:id="echoid-s4085" xml:space="preserve">priſmatis uero g m ba-
              <lb/>
            fis quadrilaterum g h K l, & </s>
            <s xml:id="echoid-s4086" xml:space="preserve">altitudo m n. </s>
            <s xml:id="echoid-s4087" xml:space="preserve">Dico priſma a e
              <lb/>
            ad priſma g m proportionem habere compoſitam ex pro
              <lb/>
            portione baſis a b c d ad baſim g h k l, & </s>
            <s xml:id="echoid-s4088" xml:space="preserve">ex proportione
              <lb/>
            altitudinis e f, ad altitudinem m n.</s>
            <s xml:id="echoid-s4089" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4090" xml:space="preserve">Sint enim primum e f, m n æquales: </s>
            <s xml:id="echoid-s4091" xml:space="preserve">& </s>
            <s xml:id="echoid-s4092" xml:space="preserve">ut baſis a b c d
              <lb/>
            ad baſim g h k l, ita fiat linea, in qua o ad lineam, in qua p:
              <lb/>
            </s>
            <s xml:id="echoid-s4093" xml:space="preserve">ut autem e f ad m n, ita linea p ad lineam q. </s>
            <s xml:id="echoid-s4094" xml:space="preserve">erunt lineæ
              <lb/>
            p q inter ſe æquales. </s>
            <s xml:id="echoid-s4095" xml:space="preserve">Itaque priſma a e ad priſma g m </s>
          </p>
        </div>
      </text>
    </echo>