Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
101
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000500
">
<
pb
pagenum
="
102
"
xlink:href
="
010/01/110.jpg
"/>
<
arrow.to.target
n
="
marg121
"/>
<
lb
/>
nicam rationem
<
expan
abbr
="
deſumptã
">deſumptam</
expan
>
à maiori, vel minori gra
<
lb
/>
uitate, quæ deducitur ex Archimedis doctrina, quòd
<
lb
/>
ſcilicèt fluidum grauius per extruſionem impellerę
<
lb
/>
<
expan
abbr
="
ſursũ
">ſursum</
expan
>
debeat corpora minùs grauia, & hæc eſt cauſa,
<
lb
/>
quare abſque poſitiua leuitate corpora ſursùm
<
expan
abbr
="
aſcẽ-dere
">aſcen
<
lb
/>
dere</
expan
>
debent. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000501
">
<
margin.target
id
="
marg121
"/>
Cap. 4. poſi
<
lb
/>
tiuam leui
<
lb
/>
tatem noņ
<
lb
/>
dari.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000502
">
<
expan
abbr
="
Cõtra
">Contra</
expan
>
<
expan
abbr
="
perſpicuitatẽ
">perſpicuitatem</
expan
>
ſupradicti ratiocinij
<
expan
abbr
="
obijciũt
">obijciunt</
expan
>
<
lb
/>
primò, quòd
<
emph
type
="
italics
"/>
ſicuti grauiora intra minùs grauia merſa fe
<
lb
/>
runtur deorsùm tanta vi, quæ ſit æqualis differentiæ gra
<
lb
/>
uitatis mobilis ſupra grauitatem medij, constat euidentèr
<
lb
/>
euenturum proportion alitèr in leuioribus intra minùs leuia
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
marg122
"/>
<
lb
/>
<
emph
type
="
italics
"/>
contentis ea ſcilicèt in ordine ad leuitatem, ſursùm, non niti
<
lb
/>
ſecundùm menſuram exceſſus ſupra minùs leue ſursùm ni
<
lb
/>
ſura, vt ſimilis ratio perſuadet.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000503
"> Hoc ſuppoſito veluti cer
<
lb
/>
tum, & euidens reſpondet argumento ſuperius addu
<
lb
/>
cto, aitque
<
emph
type
="
italics
"/>
expirationem calidam reſpectu aquæ valdè le
<
lb
/>
uem ſecundùm menſuram totius ſuæ leuitatis ſursùm niti
<
lb
/>
intra aquam, ac proindè valere ad reſiſtentiam illius cele
<
lb
/>
ritèr ſuperandam, at verò valdè exiguum exceſſum ſupra
<
lb
/>
aerem obtinentem in leuitate ſursùm niti præcisè ſecundum
<
lb
/>
menſuram talis exceſſus, ac proindè non eſſe mirum ſi lentè
<
lb
/>
per aerem aſcendat etiamſi dicatur à leuitate poſitiua in
<
lb
/>
trinſeca moueri.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000504
">
<
margin.target
id
="
marg122
"/>
Denuò ad
<
lb
/>
miſſa leuita
<
lb
/>
te colligunt
<
lb
/>
ignem cele
<
lb
/>
riùs per a
<
lb
/>
quam, quam
<
lb
/>
per aerem̨
<
lb
/>
<
expan
abbr
="
aſcẽdere
">aſcendere</
expan
>
de
<
lb
/>
bere.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000505
">Itaque ſicuti nos ex Archimedis doctrina deduci
<
lb
/>
mus rationem deſcenſus grauium, & aſcenſus
<
expan
abbr
="
leuiũ
">leuium</
expan
>
<
lb
/>
ex hac ſuppoſitione, quòd corpora omnia ſubluna
<
lb
/>
ria ſint grauia, ſibi perſuadent demonſtrare poſſe ea
<
lb
/>
dem symptomata ſupponendo nedùm corpora aſcen
<
lb
/>
dentia, ſed etiam medium fluidum, in quo
<
expan
abbr
="
aſcendũt
">aſcendunt</
expan
>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>