Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
51
52
53
54
55
56
57
58
59
60
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000209
">
<
pb
pagenum
="
46
"
xlink:href
="
010/01/054.jpg
"/>
<
arrow.to.target
n
="
marg47
"/>
<
lb
/>
dus pilæ AB nil prorsùs imminutum erit, & æquali
<
lb
/>
energia ſuſtineri debet à potentia D, ac ſi eadem pi
<
lb
/>
la extra aquam in aere libero penderet, ſed hoc eſt
<
lb
/>
falſum, cùm præcisè in ipſa aqua grauitas pilæ æqua
<
lb
/>
lis ſit differentiæ ponderis eius abſoluti à grauitatę
<
lb
/>
aquæ ſibi æqualis mole, vt ex Archimede deducitur,
<
lb
/>
igitur neceſſariò
<
expan
abbr
="
fatendũ
">fatendum</
expan
>
eſt aquam in ipſamet aqua
<
lb
/>
collocatam ponderare, & grauitatem exercere. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.000210
">
<
margin.target
id
="
marg47
"/>
Cap. 3. flui
<
lb
/>
dum in ſuo
<
lb
/>
toto quie
<
lb
/>
ſcens pon
<
lb
/>
derat.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000211
">Contra hoc euidentiſſimum ratiocinium afferri
<
lb
/>
ſolet difficultas valdè ſpecioſa, quam examinare, ac
<
lb
/>
diſſoluere erit operæ pretium, vtque ea ritè percipi
<
lb
/>
atur, conſideretur hæc figura. </
s
>
<
s
id
="
s.000212
">Sit vas cylindricum̨
<
lb
/>
<
arrow.to.target
n
="
marg48
"/>
<
lb
/>
ABDC aqua plenum ſit que eius altitudo
<
lb
/>
<
figure
id
="
id.010.01.054.1.jpg
"
xlink:href
="
010/01/054/1.jpg
"
number
="
22
"/>
<
lb
/>
diſſecta in quotcumque partes æquales,
<
lb
/>
ductis nempè planis imaginarijs MO, &
<
lb
/>
HI, erit igitur moles aquea AI duplą
<
lb
/>
aque ę molis HD; igitur pondus aquæ AI
<
lb
/>
duplum eſt ponderis aquæ HD. quia ve
<
lb
/>
rò corpus grauius minùs graue ſuperare
<
lb
/>
debet, hocque è ſuo loco expellere (cùm in eo conſi
<
lb
/>
ſtat vis, & energìa grauitatis, vt tendat deorsùm,
<
lb
/>
& ſic è loco infimo corpora minùs grauia expellat) &
<
lb
/>
poſtquàm aqua AI translata eſt ad locum HD, atque
<
lb
/>
aquam ibidem collocatam expulit denuò in ſitu ſu
<
lb
/>
periori fiſtulæ AI aqua dupli ponderis, & molis ibi
<
lb
/>
dem reſtituitur quæ pariter ſuperat grauitatem ſub
<
lb
/>
duplam aquæ, quæ ad occupandum infimum locum
<
lb
/>
HD ſucceſſit, igitur denuò aqua ſuprema vt grauior
<
lb
/>
infimam è ſuo loco extrudere, atque expellere de-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>