Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
101
(43)
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3347
"
xml:space
="
preserve
">
<
pb
file
="
0132
"
n
="
132
"
rhead
="
FED. COMMANDINI
"/>
centrum z: </
s
>
<
s
xml:id
="
echoid-s3348
"
xml:space
="
preserve
">parallelogram mi a d, θ: </
s
>
<
s
xml:id
="
echoid-s3349
"
xml:space
="
preserve
">parallelogrammi f g, φ:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3350
"
xml:space
="
preserve
">parallelogrammi d h, χ: </
s
>
<
s
xml:id
="
echoid-s3351
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3352
"
xml:space
="
preserve
">
<
lb
/>
<
figure
xlink:label
="
fig-0132-01
"
xlink:href
="
fig-0132-01a
"
number
="
88
">
<
image
file
="
0132-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0132-01
"/>
</
figure
>
parallelogrammi c g centrũ
<
lb
/>
ψ: </
s
>
<
s
xml:id
="
echoid-s3353
"
xml:space
="
preserve
">atque erit ω punctum me
<
lb
/>
dium uniuſcuiuſque axis, ui
<
lb
/>
delicet eius lineæ, quæ oppo
<
lb
/>
ſitorum planorũ centra con
<
lb
/>
iungit. </
s
>
<
s
xml:id
="
echoid-s3354
"
xml:space
="
preserve
">Dico ω centrum effe
<
lb
/>
grauitatis ipſius ſolidi. </
s
>
<
s
xml:id
="
echoid-s3355
"
xml:space
="
preserve
">eſt
<
lb
/>
enim, ut demonſtrauimus,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0132-01
"
xlink:href
="
note-0132-01a
"
xml:space
="
preserve
">6. huius</
note
>
ſolidi a f centrum grauitatis
<
lb
/>
in plano K n; </
s
>
<
s
xml:id
="
echoid-s3356
"
xml:space
="
preserve
">quod oppoſi-
<
lb
/>
tis planis a d, g f æ quidiſtans
<
lb
/>
reliquorum planorum late-
<
lb
/>
ra biſariam diuidit: </
s
>
<
s
xml:id
="
echoid-s3357
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3358
"
xml:space
="
preserve
">fimili
<
lb
/>
rationeidem centrum eſt in plano o r, æ quidiſtante planis
<
lb
/>
a e, b f oppo ſitis. </
s
>
<
s
xml:id
="
echoid-s3359
"
xml:space
="
preserve
">ergo in communi ipſorum fectione: </
s
>
<
s
xml:id
="
echoid-s3360
"
xml:space
="
preserve
">ui-
<
lb
/>
delicet in linea y z. </
s
>
<
s
xml:id
="
echoid-s3361
"
xml:space
="
preserve
">Sed eſt etiam in plano t u, quod quidẽ
<
lb
/>
y z ſecat in ω. </
s
>
<
s
xml:id
="
echoid-s3362
"
xml:space
="
preserve
">Conſtat igitur centrum grauitatis ſolidi eſſe
<
lb
/>
punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
<
lb
/>
planorum oppoſitorum centra coniungunt.</
s
>
<
s
xml:id
="
echoid-s3363
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3364
"
xml:space
="
preserve
">Sit aliud prima a f; </
s
>
<
s
xml:id
="
echoid-s3365
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3366
"
xml:space
="
preserve
">in eo plana, quæ opponuntur, tri-
<
lb
/>
angula a b c, d e f: </
s
>
<
s
xml:id
="
echoid-s3367
"
xml:space
="
preserve
">diuiſisq; </
s
>
<
s
xml:id
="
echoid-s3368
"
xml:space
="
preserve
">bifariam parallelogrammorum
<
lb
/>
lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
<
lb
/>
ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
<
lb
/>
triangulum g h k æ quale, & </
s
>
<
s
xml:id
="
echoid-s3369
"
xml:space
="
preserve
">ſimile ipſis a b c, d e f. </
s
>
<
s
xml:id
="
echoid-s3370
"
xml:space
="
preserve
">Rurſus
<
lb
/>
diuidatur a b bifariam in l: </
s
>
<
s
xml:id
="
echoid-s3371
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3372
"
xml:space
="
preserve
">iuncta c l per ipſam, & </
s
>
<
s
xml:id
="
echoid-s3373
"
xml:space
="
preserve
">per
<
lb
/>
c _K_ f planum ducatur priſma ſecans, cuius, & </
s
>
<
s
xml:id
="
echoid-s3374
"
xml:space
="
preserve
">parallelogrã
<
lb
/>
mi a e communis ſcctio ſit l m n. </
s
>
<
s
xml:id
="
echoid-s3375
"
xml:space
="
preserve
">diuidet pun ctum m li-
<
lb
/>
neam g h bifariam; </
s
>
<
s
xml:id
="
echoid-s3376
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3377
"
xml:space
="
preserve
">ita n diuidet lineam d e: </
s
>
<
s
xml:id
="
echoid-s3378
"
xml:space
="
preserve
">quoniam
<
lb
/>
triangula a c l, g k m, d f n æ qualia ſunt, & </
s
>
<
s
xml:id
="
echoid-s3379
"
xml:space
="
preserve
">ſimilia, ut ſu pra
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0132-02
"
xlink:href
="
note-0132-02a
"
xml:space
="
preserve
">5. huius</
note
>
demonſtrauimus. </
s
>
<
s
xml:id
="
echoid-s3380
"
xml:space
="
preserve
">Iam ex iis, quæ tradita ſunt, conſtat cen
<
lb
/>
trum greuitatis priſmatis in plano g h k contineri. </
s
>
<
s
xml:id
="
echoid-s3381
"
xml:space
="
preserve
">Dico
<
lb
/>
ipſum eſſe in linea k m. </
s
>
<
s
xml:id
="
echoid-s3382
"
xml:space
="
preserve
">Si enim fieri poteſt, ſit o centrum;</
s
>
<
s
xml:id
="
echoid-s3383
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>