Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
11
12
13
(1)
14
15
(2)
16
17
(3)
18
19
(4)
20
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(14)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
14
"
file
="
0139
"
n
="
139
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
ſimiliter demonſtrabitur totius priſmatis a _K_ grauitatis eſ
<
lb
/>
ſe centrum. </
s
>
<
s
xml:space
="
preserve
">Simili ratione & </
s
>
<
s
xml:space
="
preserve
">in aliis priſinatibus illud
<
lb
/>
idem ſacile demonſtrabitur. </
s
>
<
s
xml:space
="
preserve
">Quo autem pacto in omni
<
lb
/>
figura rectilinea centrum grauitatis inueniatur, do cuimus
<
lb
/>
in commentariis in ſextam propoſitionem Archimedis de
<
lb
/>
quadratura parabolæ.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
4
">
<
figure
xlink:label
="
fig-0138-01
"
xlink:href
="
fig-0138-01a
">
<
image
file
="
0138-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0138-01
"/>
</
figure
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit cylindrus, uel cylindri portio c e cuius axis a b: </
s
>
<
s
xml:space
="
preserve
">ſece-
<
lb
/>
turq, plano per axem ducto; </
s
>
<
s
xml:space
="
preserve
">quod ſectionem faciat paral-
<
lb
/>
lelo grammum c d e f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">diuiſis c f, d e bifariam in punctis
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0139-01a
"
xlink:href
="
fig-0139-01
"/>
g h, per ea ducatur planum baſi æquidiſtans. </
s
>
<
s
xml:space
="
preserve
">erit ſectio g h
<
lb
/>
circulus, uel ellipſis, centrum habens in axe; </
s
>
<
s
xml:space
="
preserve
">quod ſit K: </
s
>
<
s
xml:space
="
preserve
">at-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0139-01a
"
xlink:href
="
note-0139-01
"/>
que erunt ex iis, quæ demonſtrauimus, centra grauitatis
<
lb
/>
planorum oppoſitorum puncta a b: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">plani g h ipſum _k_. </
s
>
<
s
xml:space
="
preserve
">in
<
lb
/>
quo quidem plano eſt centrum grauitatis cylindri, uel cy-
<
lb
/>
lindri portionis. </
s
>
<
s
xml:space
="
preserve
">Dico punctum K cylindri quoque, uel cy
<
lb
/>
lindri portionis grauitatis centrum eſſe. </
s
>
<
s
xml:space
="
preserve
">Si enim fieri po-
<
lb
/>
teſt, ſitl centrum: </
s
>
<
s
xml:space
="
preserve
">ducaturq; </
s
>
<
s
xml:space
="
preserve
">k l, & </
s
>
<
s
xml:space
="
preserve
">extra figuram in m pro-
<
lb
/>
ducatur. </
s
>
<
s
xml:space
="
preserve
">quam uero proportionem habet linea m K ad _k_ l</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>