Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
121
(5)
122
123
(6)
124
125
(7)
126
127
(8)
128
129
(9)
130
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3452
"
xml:space
="
preserve
">
<
pb
file
="
0136
"
n
="
136
"
rhead
="
FED. COMMANDINI
"/>
medis. </
s
>
<
s
xml:id
="
echoid-s3453
"
xml:space
="
preserve
">ergo punctum v extra p riſima a f poſitum, centrũ
<
lb
/>
erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
<
lb
/>
r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
<
lb
/>
teſt. </
s
>
<
s
xml:id
="
echoid-s3454
"
xml:space
="
preserve
">eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
<
lb
/>
ræ intra ipſam poſitum, non extra. </
s
>
<
s
xml:id
="
echoid-s3455
"
xml:space
="
preserve
">quare relinquitur, ut cẽ
<
lb
/>
trum grauitatis priſmatis ſit in linea K m. </
s
>
<
s
xml:id
="
echoid-s3456
"
xml:space
="
preserve
">Rurſus b c bifa-
<
lb
/>
riam in ξ diuidatur: </
s
>
<
s
xml:id
="
echoid-s3457
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3458
"
xml:space
="
preserve
">ducta a ξ, per ipſam, & </
s
>
<
s
xml:id
="
echoid-s3459
"
xml:space
="
preserve
">per lineam
<
lb
/>
a g d plan um ducatur; </
s
>
<
s
xml:id
="
echoid-s3460
"
xml:space
="
preserve
">quod priſma ſecet: </
s
>
<
s
xml:id
="
echoid-s3461
"
xml:space
="
preserve
">faciatq; </
s
>
<
s
xml:id
="
echoid-s3462
"
xml:space
="
preserve
">in paral
<
lb
/>
lelogrammo b f ſectionem ξ π di uidet punctum π lineam
<
lb
/>
quoque c f bifariam: </
s
>
<
s
xml:id
="
echoid-s3463
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3464
"
xml:space
="
preserve
">erit p lani eius, & </
s
>
<
s
xml:id
="
echoid-s3465
"
xml:space
="
preserve
">trianguli g h K
<
lb
/>
communis ſectio g u; </
s
>
<
s
xml:id
="
echoid-s3466
"
xml:space
="
preserve
">quòd p ũctum u in inedio lineæ h K
<
lb
/>
<
figure
xlink:label
="
fig-0136-01
"
xlink:href
="
fig-0136-01a
"
number
="
91
">
<
image
file
="
0136-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01
"/>
</
figure
>
poſitum ſi t. </
s
>
<
s
xml:id
="
echoid-s3467
"
xml:space
="
preserve
">Similiter demonſtrabimus centrum grauita-
<
lb
/>
tis priſm atis in ipſa g u ineſſe. </
s
>
<
s
xml:id
="
echoid-s3468
"
xml:space
="
preserve
">ſit autem planorum c f n l,
<
lb
/>
a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
<
lb
/>
axis erit, cum tranſeat per centra grauitatis triangulorum
<
lb
/>
a b c, g h k, d e f, ex quartadecima eiuſdem. </
s
>
<
s
xml:id
="
echoid-s3469
"
xml:space
="
preserve
">ergo centrum
<
lb
/>
grauitatis pri ſmatis a f eſt punctum σ, centrum </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>