Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
51
(20)
52
53
(21)
54
55
(22)
56
57
(23)
58
59
(24)
60
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(21)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
p
>
<
s
xml:id
="
echoid-s3836
"
xml:space
="
preserve
">
<
pb
o
="
21
"
file
="
0153
"
n
="
153
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
diuidendo figura ſolida inſcripta ad dictam exceſſus par-
<
lb
/>
tem, ut τ e ad e ρ. </
s
>
<
s
xml:id
="
echoid-s3837
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3838
"
xml:space
="
preserve
">quoniam à cono, ſeu coni portione,
<
lb
/>
cuius grauitatis centrum eſt e, aufertur figura inſcripta,
<
lb
/>
cuius centrum ρ: </
s
>
<
s
xml:id
="
echoid-s3839
"
xml:space
="
preserve
">reſiduæ magnitudinis compoſitæ ex par
<
lb
/>
te exceſſus, quæ intra coni, uel coni portionis ſuperficiem
<
lb
/>
continetur, centrum grauitatis erit in linea ζ e protracta,
<
lb
/>
atque in puncto τ. </
s
>
<
s
xml:id
="
echoid-s3840
"
xml:space
="
preserve
">quod eſt abſurdum. </
s
>
<
s
xml:id
="
echoid-s3841
"
xml:space
="
preserve
">cõſtat ergo centrũ
<
lb
/>
grauitatis coni, uel coni portionis, eſſe in axe b d: </
s
>
<
s
xml:id
="
echoid-s3842
"
xml:space
="
preserve
">quod de
<
lb
/>
monſcrandum propoſuimus.</
s
>
<
s
xml:id
="
echoid-s3843
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div234
"
type
="
section
"
level
="
1
"
n
="
80
">
<
head
xml:id
="
echoid-head87
"
xml:space
="
preserve
">THE OREMA XI. PROPOSITIO XV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3844
"
xml:space
="
preserve
">Cuiuslibet portionis ſphæræ uel ſphæroidis,
<
lb
/>
quæ dimidia maior non ſit: </
s
>
<
s
xml:id
="
echoid-s3845
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s3846
"
xml:space
="
preserve
">cuiuslibet por
<
lb
/>
tionis conoidis, uel abſciſſæ plano ad axem recto,
<
lb
/>
uel non recto, centrum grauitatis in axe con-
<
lb
/>
ſiſtit.</
s
>
<
s
xml:id
="
echoid-s3847
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3848
"
xml:space
="
preserve
">Demonſtratio ſimilis erit ei, quam ſupra in cono, uel co
<
lb
/>
ni portione attulimus, ne toties eadem fruſtra iterentur.</
s
>
<
s
xml:id
="
echoid-s3849
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
106
">
<
image
file
="
0153-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0153-01
"/>
</
figure
>
</
div
>
</
text
>
</
echo
>