Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
61
(25)
62
63
(26)
64
65
(27)
66
67
(22)
68
69
(29)
70
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div94
"
type
="
section
"
level
="
1
"
n
="
37
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1470
"
xml:space
="
preserve
">
<
pb
file
="
0062
"
n
="
62
"
rhead
="
ARCHIMEDIS
"/>
quadratum e ψ ad quadr. </
s
>
<
s
xml:id
="
echoid-s1471
"
xml:space
="
preserve
">itum ψ b.</
s
>
<
s
xml:id
="
echoid-s1472
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1473
"
xml:space
="
preserve
">_Sed quam proportionem habet qua-_
<
lb
/>
<
figure
xlink:label
="
fig-0062-01
"
xlink:href
="
fig-0062-01a
"
number
="
40
">
<
image
file
="
0062-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0062-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0062-01
"
xlink:href
="
note-0062-01a
"
xml:space
="
preserve
">F</
note
>
_dratum p i ad quadratum i y, eandem li_
<
lb
/>
_nea k r habet ad lineam i y.</
s
>
<
s
xml:id
="
echoid-s1474
"
xml:space
="
preserve
">]_ Est enim ex
<
lb
/>
undecima primi conicorum quadratum p i æqua
<
lb
/>
le rectangulo contento linea i o, & </
s
>
<
s
xml:id
="
echoid-s1475
"
xml:space
="
preserve
">ea, iuxta quam poſſunt quæ à
<
lb
/>
ſectione ad diametrum ducuntur, uidelicet duplaipſius k r. </
s
>
<
s
xml:id
="
echoid-s1476
"
xml:space
="
preserve
">atque
<
lb
/>
est i y dupla i o, extrigeſimatertia eiuſdem: </
s
>
<
s
xml:id
="
echoid-s1477
"
xml:space
="
preserve
">quare ex decimaſext a
<
lb
/>
ſexti elementorum, rectangulum, quod fit ex k r, & </
s
>
<
s
xml:id
="
echoid-s1478
"
xml:space
="
preserve
">i y æ quale eſt
<
lb
/>
rectangulo contento linea i o & </
s
>
<
s
xml:id
="
echoid-s1479
"
xml:space
="
preserve
">ea, iuxta quam poſſunt: </
s
>
<
s
xml:id
="
echoid-s1480
"
xml:space
="
preserve
">hoc eſt qua
<
lb
/>
drato p i. </
s
>
<
s
xml:id
="
echoid-s1481
"
xml:space
="
preserve
">Sed ut rectangulnm ex k r, & </
s
>
<
s
xml:id
="
echoid-s1482
"
xml:space
="
preserve
">i y ad quadratum i y, ita
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-02
"
xlink:href
="
note-0062-02a
"
xml:space
="
preserve
">lem. 22.
<
lb
/>
decimi.</
note
>
linea κ r ad ipſam i y. </
s
>
<
s
xml:id
="
echoid-s1483
"
xml:space
="
preserve
">ergo linea κ r ad i y eandem proportionem
<
lb
/>
habebit, quam rectangulum ex κ r & </
s
>
<
s
xml:id
="
echoid-s1484
"
xml:space
="
preserve
">i y, hoc eſt quadratum p i ad
<
lb
/>
quadratum i y.</
s
>
<
s
xml:id
="
echoid-s1485
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1486
"
xml:space
="
preserve
">Et quam proportionem habet quadratũ e ψ ad quadra
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-03
"
xlink:href
="
note-0062-03a
"
xml:space
="
preserve
">G</
note
>
tum ψ b, eandem habet dimidium lineæ K r ad lineã ψ b.</
s
>
<
s
xml:id
="
echoid-s1487
"
xml:space
="
preserve
">]</
s
>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1488
"
xml:space
="
preserve
">Nam cum quadratum e ψ poſitum ſit æquale dimidio rectanguli
<
lb
/>
contenti linea κ r, & </
s
>
<
s
xml:id
="
echoid-s1489
"
xml:space
="
preserve
">ψ b; </
s
>
<
s
xml:id
="
echoid-s1490
"
xml:space
="
preserve
">hoc est ei, quod dimidia ipſius κ r
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s1491
"
xml:space
="
preserve
">linea ψ b continetur: </
s
>
<
s
xml:id
="
echoid-s1492
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1493
"
xml:space
="
preserve
">ut rectangulum ex dimidia κ r, & </
s
>
<
s
xml:id
="
echoid-s1494
"
xml:space
="
preserve
">ψ b
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-04
"
xlink:href
="
note-0062-04a
"
xml:space
="
preserve
">lem. 22.
<
lb
/>
decimi</
note
>
ad quadratum ψ b, ita ſit dimidia κ r ad line am ψ b: </
s
>
<
s
xml:id
="
echoid-s1495
"
xml:space
="
preserve
">habebit dimi-
<
lb
/>
dia κ r ad ψ b proportionem eandem, quam quadratum e ψ ad qua-
<
lb
/>
dratum ψ b.</
s
>
<
s
xml:id
="
echoid-s1496
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1497
"
xml:space
="
preserve
">_Etidcirco i y minor eſt, quàm dupla ψ b.</
s
>
<
s
xml:id
="
echoid-s1498
"
xml:space
="
preserve
">]_ Quam enim pro
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-05
"
xlink:href
="
note-0062-05a
"
xml:space
="
preserve
">H</
note
>
portionem habet dimidium κ r ad ψ b, habeat κ r ad aliam lineam.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1499
"
xml:space
="
preserve
">erit ea maior, quàm i y; </
s
>
<
s
xml:id
="
echoid-s1500
"
xml:space
="
preserve
">nempe ad quam κ r minorem proportioné
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-06
"
xlink:href
="
note-0062-06a
"
xml:space
="
preserve
">10. quinti.</
note
>
habet: </
s
>
<
s
xml:id
="
echoid-s1501
"
xml:space
="
preserve
">at que erit dupla ψ b. </
s
>
<
s
xml:id
="
echoid-s1502
"
xml:space
="
preserve
">ergo i y minor eſt, quam dupla ψ b.</
s
>
<
s
xml:id
="
echoid-s1503
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1504
"
xml:space
="
preserve
">_Et i ω maior, quam ψ r.</
s
>
<
s
xml:id
="
echoid-s1505
"
xml:space
="
preserve
">]_ Cum enim o ω poſita ſit æ qualis b r
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-07
"
xlink:href
="
note-0062-07a
"
xml:space
="
preserve
">K</
note
>
ſi ex b r dematur ψ b, & </
s
>
<
s
xml:id
="
echoid-s1506
"
xml:space
="
preserve
">ex o ω dematur o i, quæ minor eſt ψ b: </
s
>
<
s
xml:id
="
echoid-s1507
"
xml:space
="
preserve
">erit
<
lb
/>
reliqua i ω maior reliqua ψ r.</
s
>
<
s
xml:id
="
echoid-s1508
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1509
"
xml:space
="
preserve
">_Atqueideo f q æqualis eſt ipſi p m.</
s
>
<
s
xml:id
="
echoid-s1510
"
xml:space
="
preserve
">]_ Ex decimaquarta
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-08
"
xlink:href
="
note-0062-08a
"
xml:space
="
preserve
">L</
note
>
quinti elementorum, nam linea o n ipſi b d eſt æ qualis.</
s
>
<
s
xml:id
="
echoid-s1511
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1512
"
xml:space
="
preserve
">_Demonſtrata eſt autem p h maior, quàm f.</
s
>
<
s
xml:id
="
echoid-s1513
"
xml:space
="
preserve
">]_ Etenim de-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-09
"
xlink:href
="
note-0062-09a
"
xml:space
="
preserve
">M</
note
>
monstrata est i ω maior, quàm f; </
s
>
<
s
xml:id
="
echoid-s1514
"
xml:space
="
preserve
">atque est p h æqualis ipſi i ω.</
s
>
<
s
xml:id
="
echoid-s1515
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1516
"
xml:space
="
preserve
">_Eodem modo demonſtrabitur t h perpendicularis ad_
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0062-10
"
xlink:href
="
note-0062-10a
"
xml:space
="
preserve
">N</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>