Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
91
(40)
92
93
(41)
94
95
(42)
96
97
(43)
98
99
(44)
100
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(10)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div214
"
type
="
section
"
level
="
1
"
n
="
72
">
<
pb
o
="
10
"
file
="
0131
"
n
="
131
"
rhead
="
DE CENTRO GRA VIT. SOLID.
"/>
<
figure
number
="
87
">
<
image
file
="
0131-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0131-01
"/>
</
figure
>
</
div
>
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
head
xml:id
="
echoid-head80
"
xml:space
="
preserve
">THE OREMA VIII. PROPOSITIO VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3336
"
xml:space
="
preserve
">Cuiuslibet priſmatis, & </
s
>
<
s
xml:id
="
echoid-s3337
"
xml:space
="
preserve
">cuiuslibet cylindri, uel
<
lb
/>
cylindri portionis grauitatis centrum in medio
<
lb
/>
ipſius axis conſiſtit.</
s
>
<
s
xml:id
="
echoid-s3338
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3339
"
xml:space
="
preserve
">Sit primum a f priſma æ quidiſtantibus planis contentũ,
<
lb
/>
quod ſolidum parallelepipedum appellatur: </
s
>
<
s
xml:id
="
echoid-s3340
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3341
"
xml:space
="
preserve
">oppoſito-
<
lb
/>
rum planorum c f, a h, d a, f g latera bifariam diuidantur in
<
lb
/>
punctis k l m n o p q r s t u x: </
s
>
<
s
xml:id
="
echoid-s3342
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3343
"
xml:space
="
preserve
">per diuiſiones ducantur
<
lb
/>
plana κ n, o r, s x. </
s
>
<
s
xml:id
="
echoid-s3344
"
xml:space
="
preserve
">communes autem eorum planorum ſe-
<
lb
/>
ctiones ſint lineæ y z, θ φ, χ ψ: </
s
>
<
s
xml:id
="
echoid-s3345
"
xml:space
="
preserve
">quæ in puncto ω conueniãt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3346
"
xml:space
="
preserve
">erit ex decima eiuſdem libri Archimedis parallelogrammi
<
lb
/>
c f centrum grauitatis punctum y; </
s
>
<
s
xml:id
="
echoid-s3347
"
xml:space
="
preserve
">parallelogrammi a </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>