Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
91
(40)
92
93
(41)
94
95
(42)
96
97
(43)
98
99
(44)
100
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(43)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div175
"
type
="
section
"
level
="
1
"
n
="
55
">
<
pb
o
="
43
"
file
="
0097
"
n
="
97
"
rhead
="
DE I _IS_ QVAE VEH. IN AQVA.
"/>
</
div
>
<
div
xml:id
="
echoid-div182
"
type
="
section
"
level
="
1
"
n
="
56
">
<
head
xml:id
="
echoid-head61
"
xml:space
="
preserve
">DEMONSTRATIO QVARTAE PARTIS.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2560
"
xml:space
="
preserve
">HABEAT rurſum portio ad humidum in grauitate
<
lb
/>
proportionem quidem maiorem, quàm quadratum f p ad
<
lb
/>
quadratum b d; </
s
>
<
s
xml:id
="
echoid-s2561
"
xml:space
="
preserve
">minorem uero, quàm quadratum x o ad
<
lb
/>
b d quadratum: </
s
>
<
s
xml:id
="
echoid-s2562
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2563
"
xml:space
="
preserve
">quam proportionem habet portio ad
<
lb
/>
humidum in grauitate, eandem habeat quadratum, quod
<
lb
/>
fit à linea ψ ad quadratum b d. </
s
>
<
s
xml:id
="
echoid-s2564
"
xml:space
="
preserve
">erit ψ maior, quàm f p, & </
s
>
<
s
xml:id
="
echoid-s2565
"
xml:space
="
preserve
">mi
<
lb
/>
nor, quàm x o. </
s
>
<
s
xml:id
="
echoid-s2566
"
xml:space
="
preserve
">aptetur ergo quæ dam rectalinea i u inter
<
lb
/>
portiones a u q l, a x d interiecta, quæ ſit æqualis ψ, & </
s
>
<
s
xml:id
="
echoid-s2567
"
xml:space
="
preserve
">ipſi
<
lb
/>
b d æquidiſtans: </
s
>
<
s
xml:id
="
echoid-s2568
"
xml:space
="
preserve
">occurratq; </
s
>
<
s
xml:id
="
echoid-s2569
"
xml:space
="
preserve
">reliquæ ſectioni in y. </
s
>
<
s
xml:id
="
echoid-s2570
"
xml:space
="
preserve
">rurſus
<
lb
/>
u y dupla ipſius y i demonſtrabitur, ſicuti demonſtrata eſt
<
lb
/>
o g ipſius g x dupla. </
s
>
<
s
xml:id
="
echoid-s2571
"
xml:space
="
preserve
">ducatur autem ab u linea u ο, quæ ſe
<
lb
/>
ctionem a u q l in u contingat: </
s
>
<
s
xml:id
="
echoid-s2572
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2573
"
xml:space
="
preserve
">iuncta a i ad q produca
<
lb
/>
tur. </
s
>
<
s
xml:id
="
echoid-s2574
"
xml:space
="
preserve
">eodem modo oſtendemus lineam a i ipſi i q æqualem
<
lb
/>
eſſe: </
s
>
<
s
xml:id
="
echoid-s2575
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2576
"
xml:space
="
preserve
">a q ipſi
<
lb
/>
<
figure
xlink:label
="
fig-0097-01
"
xlink:href
="
fig-0097-01a
"
number
="
63
">
<
image
file
="
0097-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0097-01
"/>
</
figure
>
u ω æquidiſtan-
<
lb
/>
tem. </
s
>
<
s
xml:id
="
echoid-s2577
"
xml:space
="
preserve
">Demon-
<
lb
/>
ſtrãdum eſt por
<
lb
/>
tionem in humi
<
lb
/>
dum demiſſam,
<
lb
/>
ĩclinatãq; </
s
>
<
s
xml:id
="
echoid-s2578
"
xml:space
="
preserve
">adeo,
<
lb
/>
ut baſis ipſius
<
lb
/>
non contingat
<
lb
/>
humidũ, ita con
<
lb
/>
ſiſtere, ut baſis
<
lb
/>
in humidũ ma-
<
lb
/>
gis demergatur
<
lb
/>
quam ut in uno
<
lb
/>
puncto eius ſu-
<
lb
/>
perficiem cõtin
<
lb
/>
gat. </
s
>
<
s
xml:id
="
echoid-s2579
"
xml:space
="
preserve
">Demittatur enim in humidum, ut dictum eſt; </
s
>
<
s
xml:id
="
echoid-s2580
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2581
"
xml:space
="
preserve
">iaceat
<
lb
/>
primo ſic inclinata, ut baſis nullo modo contingat ſuperfi-
<
lb
/>
ciem humidi. </
s
>
<
s
xml:id
="
echoid-s2582
"
xml:space
="
preserve
">ſecta autem ipſa plano per axem ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>