Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
191
192
193
194
195
196
197
198
199
200
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001463
">
<
pb
pagenum
="
282
"
xlink:href
="
010/01/290.jpg
"/>
<
arrow.to.target
n
="
marg377
"/>
<
lb
/>
quòd hoc æquilibratur ab æquipondio ipſius E, &
<
lb
/>
proinde F nullam compreſſionem exercet, perinde,
<
lb
/>
ac ſi grauitate omninò careret, quare à quacumque
<
lb
/>
exiliſſima vi ſuſpendi, & ſursùm impelli poterit, ſit
<
lb
/>
<
figure
id
="
id.010.01.290.1.jpg
"
xlink:href
="
010/01/290/1.jpg
"
number
="
108
"/>
<
lb
/>
que talis vis ſuſpenſiua, vna pars
<
lb
/>
quarta
<
expan
abbr
="
põderis
">ponderis</
expan
>
ipſius F, igitur
<
expan
abbr
="
põ-dus
">pon
<
lb
/>
dus</
expan
>
quod F exercet, erit tres quar
<
lb
/>
tæ partes totius ponderis E, igitur
<
lb
/>
non ampliùs fiet æquilibrium, ſed
<
lb
/>
pondus E exercebit quadrantem
<
lb
/>
totius ſui ponderis, & cum hoc
<
expan
abbr
="
cõ-primet
">com
<
lb
/>
primet</
expan
>
<
expan
abbr
="
ſubiectã
">ſubiectam</
expan
>
a
<
expan
abbr
="
quã
">quam</
expan
>
C, & proin
<
lb
/>
dè eleuare poterit in oppoſito tu
<
lb
/>
bo ſiphonis aquæ molem BM, cu
<
lb
/>
ius pondus vna quarta pars ſit
<
lb
/>
ponderis E, vel F. </
s
>
<
s
id
="
s.001464
">Poſteà denuò ſuperaddita cau
<
lb
/>
fa externa ſursùm F impellente, & ſuſtentante, vt
<
lb
/>
nimirùm remaneat vis comprimens ipſius E immi
<
lb
/>
nuta, & æqualis medietati ponderis E. </
s
>
<
s
id
="
s.001465
">Manifeſtum̨
<
lb
/>
eſt magis æquilibrium ſuperare graue E, ſcilicèt eius
<
lb
/>
momentum erit æquale dimidio totius eius ponderis
<
lb
/>
E, vel F, proindeque eleuabit duplam aquæ molem
<
lb
/>
in aduerſo tubo vſque ad O, vt nimirùm moles aquæ
<
lb
/>
BO dupla ſit ipſius BM, & ſic vlteriùs adueniente no
<
lb
/>
ua vi ſuſtentante pondus F ſemper magis diminuetur
<
lb
/>
ipſius F compreſſio, & tantumdèm præcisè creſcet
<
lb
/>
momentum ponderis E, & tantundem augebitur ele
<
lb
/>
uatio aquæ in tubo BR, quaproptèr conſtat quod à
<
lb
/>
maiori vi ſursùm
<
expan
abbr
="
impellẽte
">impellente</
expan
>
pondus F neceſſariò ma-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>