Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

List of thumbnails

< >
201
201
202
202
203
203
204
204
205
205
206
206
207
207
208
208
209
209
210
210
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001550">
                <pb pagenum="296" xlink:href="010/01/304.jpg"/>
                <arrow.to.target n="marg398"/>
                <lb/>
              conſtat, & in quas diuidi poteſt, ſint ſemper fluidæ,
                <lb/>
              quod erat oſtendendum. </s>
            </p>
            <p type="margin">
              <s id="s.001551">
                <margin.target id="marg394"/>
              Cap. 7. dę
                <lb/>
              natura flui­
                <lb/>
              ditatis.</s>
            </p>
            <p type="margin">
              <s id="s.001552">
                <margin.target id="marg395"/>
              Prop. 138.</s>
            </p>
            <p type="margin">
              <s id="s.001553">
                <margin.target id="marg396"/>
              Prop. 135. &
                <lb/>
              136.</s>
            </p>
            <p type="margin">
              <s id="s.001554">
                <margin.target id="marg397"/>
              Prop. 134.</s>
            </p>
            <p type="margin">
              <s id="s.001555">
                <margin.target id="marg398"/>
              Cap. 7. dę
                <lb/>
              natura flui­
                <lb/>
              ditatis.</s>
            </p>
            <p type="main">
              <s id="s.001556">Hinc deducitur, quòd corpus fluidum componitur
                <lb/>
              ex minimis particulis non fluidis. </s>
            </p>
            <p type="main">
              <s id="s.001557">
                <emph type="center"/>
              PROP. CXLI.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001558">
                <emph type="center"/>
                <emph type="italics"/>
              Idem aliter demonſtrare.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001559">SI enim hoc verum non eſt, ſcilicèt ſi particulæ a­
                <lb/>
              quam fluidam componentes ſemper fluidæ ſunt,
                <lb/>
              igitur diuidi ſemper poterit aqua ſucceſſiuè, & iņ
                <lb/>
              infinitum in particulas, quæ ſemper fluidæ ſint, hoc
                <lb/>
                <arrow.to.target n="marg399"/>
                <lb/>
              tamen primò repugnat ipſimet Ariſtoteli, qui negat
                <lb/>
              contra Anaxagoram poſſe quodlibet corpus natura­
                <lb/>
              le retinere eandem
                <expan abbr="naturã">naturam</expan>
              ſi ſemper magis, ac magis
                <lb/>
              per continuam diuiſionem ad exiguas & minimas
                <lb/>
              particulas reducatur; ſic diuiſa animalis carne deue­
                <lb/>
              nietur tandem ad particulas, quæ non ampliùs carnes
                <lb/>
              ſint; ſic paritèr, vt habent eius expoſitores in elemen­
                <lb/>
              tis facta conſimili diuiſione ſucceſſiua, tandem minu­
                <lb/>
              tiſſimæ particulæ non ampliùs elementarem naturam
                <lb/>
              retinebunt. </s>
              <s id="s.001560">Hinc igitur licet inferre quòd fluido a­
                <lb/>
              queo in infinitum ſucceſſiuè diuiſo deuenietur tan­
                <lb/>
              dem ad particulas eius, quæ fluidæ non ſint, ſcilicèt
                <lb/>
              cuius vna particula non poſſit moueri quieſcentibus
                <lb/>
              reliquis, & propterea omnes ſimùl vnico motu agita­
                <lb/>
              ri poterunt, ſcilicet conſiſtentiam ſolidam haberę
                <lb/>
              neceſsè eſt. </s>
            </p>
            <p type="margin">
              <s id="s.001561">
                <margin.target id="marg399"/>
              Phyſ lib. 1
                <lb/>
              cap. 4.</s>
            </p>
            <p type="main">
              <s id="s.001562">Sed relicta Ariſtotelis, & Peripateticorum autho-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>