Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
381
382
383
384
385
386
387
388
389
390
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.002158
">
<
pb
pagenum
="
421
"
xlink:href
="
010/01/429.jpg
"/>
<
arrow.to.target
n
="
marg549
"/>
<
lb
/>
N, nifi quia prædicta fluida diuerſimodè reſiſtunt, &
<
lb
/>
alterant naturalem impetum, & motum eiuſdem mo
<
lb
/>
bilis. </
s
>
<
s
id
="
s.002159
">Supponamus igitur, quod gradus abſolutus ve
<
lb
/>
locitatis grauis A non retardatus, neque impeditus
<
lb
/>
à craſſitie alicuius medij fluidi ſit
<
expan
abbr
="
tãtæ
">tantæ</
expan
>
energiæ vt
<
expan
abbr
="
tẽ-pore
">ten
<
lb
/>
pore</
expan
>
T excurrere poſſit prolixiùs ſpatium CL; quare
<
lb
/>
retardatio profecta à craſſitie fluidi M impedientę
<
lb
/>
eius motum ſit DL, ſed à maiori craſſitie R alterius
<
lb
/>
fluidi N retardetur ſubtrahaturque ab integro, & na
<
lb
/>
turali eius fluxu ſpatium EL maius quam DL. modò
<
lb
/>
ſi retardatio DL facta à denſitate S fluidi M mi
<
lb
/>
nor fuerit ſpatio CE exacto in fluido N minori ve
<
lb
/>
locitate; dico, quod corporis A maior velocitas in
<
lb
/>
fluido M ad minorem velocitatem, quam exercet in
<
lb
/>
fluido N minorem proportionem habebit, quàm
<
expan
abbr
="
re-ſiſtẽtia
">re
<
lb
/>
ſiſtentia</
expan
>
, ſeù craſſities R ad reſiſtentiam S: ſi verò DL
<
lb
/>
æqualis fuerit CE proportionalia erunt; & tandem̨
<
lb
/>
ſi DL maior fuerit, quam CE, tunc velocitas, quam̨
<
lb
/>
exercet A in M ad velocitatem, quam exercet in N
<
lb
/>
<
expan
abbr
="
maiorẽ
">maiorem</
expan
>
<
expan
abbr
="
proportionẽ
">proportionem</
expan
>
habebit, quàm craſſities R ad S. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002160
">
<
margin.target
id
="
marg549
"/>
Cap. 10. de
<
lb
/>
æquitempo
<
lb
/>
ranea natu
<
lb
/>
rali veloci
<
lb
/>
tate
<
expan
abbr
="
grauiũ
">grauium</
expan
>
.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002161
">Ponamus primò DL minorem eſſe, quàm CE. quia
<
lb
/>
eadem ED ad maiorem CE habet
<
expan
abbr
="
minorẽ
">minorem</
expan
>
propor
<
lb
/>
tionem quàm ad minorem DL, igitur componendo
<
lb
/>
DC ad CE minorem proportionem habebit, quàm̨
<
lb
/>
EL ad LD, ſed vt DC ad CE, ita ſe habet velocitas
<
lb
/>
ipſius A in fluido M ad
<
expan
abbr
="
velocitatẽ
">velocitatem</
expan
>
eiuſdem in fluido
<
lb
/>
N, (propterea quòd velocitates eodem tempore T
<
lb
/>
exactè proportionales ſunt ſpatijs excurſis): & ſimi
<
lb
/>
litèr impedimentum, & retardatio, quam affert craſ-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>