Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

List of thumbnails

< >
381
381
382
382
383
383
384
384
385
385
386
386
387
387
388
388
389
389
390
390
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002158">
                <pb pagenum="421" xlink:href="010/01/429.jpg"/>
                <arrow.to.target n="marg549"/>
                <lb/>
              N, nifi quia prædicta fluida diuerſimodè reſiſtunt, &
                <lb/>
              alterant naturalem impetum, & motum eiuſdem mo­
                <lb/>
              bilis. </s>
              <s id="s.002159">Supponamus igitur, quod gradus abſolutus ve­
                <lb/>
              locitatis grauis A non retardatus, neque impeditus
                <lb/>
              à craſſitie alicuius medij fluidi ſit
                <expan abbr="tãtæ">tantæ</expan>
              energiæ vt
                <expan abbr="tẽ-pore">ten­
                  <lb/>
                pore</expan>
              T excurrere poſſit prolixiùs ſpatium CL; quare
                <lb/>
              retardatio profecta à craſſitie fluidi M impedientę
                <lb/>
              eius motum ſit DL, ſed à maiori craſſitie R alterius
                <lb/>
              fluidi N retardetur ſubtrahaturque ab integro, & na­
                <lb/>
              turali eius fluxu ſpatium EL maius quam DL. modò
                <lb/>
              ſi retardatio DL facta à denſitate S fluidi M mi­
                <lb/>
              nor fuerit ſpatio CE exacto in fluido N minori ve­
                <lb/>
              locitate; dico, quod corporis A maior velocitas in
                <lb/>
              fluido M ad minorem velocitatem, quam exercet in
                <lb/>
              fluido N minorem proportionem habebit, quàm
                <expan abbr="re-ſiſtẽtia">re­
                  <lb/>
                ſiſtentia</expan>
              , ſeù craſſities R ad reſiſtentiam S: ſi verò DL
                <lb/>
              æqualis fuerit CE proportionalia erunt; & tandem̨
                <lb/>
              ſi DL maior fuerit, quam CE, tunc velocitas, quam̨
                <lb/>
              exercet A in M ad velocitatem, quam exercet in N
                <lb/>
                <expan abbr="maiorẽ">maiorem</expan>
                <expan abbr="proportionẽ">proportionem</expan>
              habebit, quàm craſſities R ad S. </s>
            </p>
            <p type="margin">
              <s id="s.002160">
                <margin.target id="marg549"/>
              Cap. 10. de
                <lb/>
              æquitempo­
                <lb/>
              ranea natu­
                <lb/>
              rali veloci­
                <lb/>
              tate
                <expan abbr="grauiũ">grauium</expan>
              .</s>
            </p>
            <p type="main">
              <s id="s.002161">Ponamus primò DL minorem eſſe, quàm CE. quia
                <lb/>
              eadem ED ad maiorem CE habet
                <expan abbr="minorẽ">minorem</expan>
              propor­
                <lb/>
              tionem quàm ad minorem DL, igitur componendo
                <lb/>
              DC ad CE minorem proportionem habebit, quàm̨
                <lb/>
              EL ad LD, ſed vt DC ad CE, ita ſe habet velocitas
                <lb/>
              ipſius A in fluido M ad
                <expan abbr="velocitatẽ">velocitatem</expan>
              eiuſdem in fluido
                <lb/>
              N, (propterea quòd velocitates eodem tempore T
                <lb/>
              exactè proportionales ſunt ſpatijs excurſis): & ſimi­
                <lb/>
              litèr impedimentum, & retardatio, quam affert craſ-</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>