Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

List of thumbnails

< >
41
41
42
42
43
43
44
44
45
45
46
46
47
47
48
48
49
49
50
50
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001192">
                <pb pagenum="232" xlink:href="010/01/240.jpg"/>
                <arrow.to.target n="marg310"/>
                <lb/>
                <emph type="italics"/>
              gis comprimi aera interceptum inter D, & dictum opercu­
                <lb/>
              lum à mercurio FB, & cylindro aeris grauitantis per fora­
                <lb/>
              men A, quam remoto operculo, & clauſo foramine A ab eo­
                <lb/>
              dem mercurio BF & eodem cylindro aeris exterioris, nam
                <lb/>
              perindè eſt ſiue tota vis preſsionis per lineam vnicam inci­
                <lb/>
              dat, vel applicetur; ſiue ſubduplum per vnam, & ſubdu­
                <lb/>
              plum per oppoſitam.
                <emph.end type="italics"/>
              </s>
              <s id="s.001193"> Vnde (paucis interceptis conclu­
                <lb/>
              dit)
                <emph type="italics"/>
              perſpicuè deduco non ideo admoto ſcilicet operculo in G
                <lb/>
              extare mercurium BF, & minimè ſubſidere, quia ſcilicet
                <lb/>
              dictus aer interceptus comprimi vltra non poteſt, ſed alia de
                <lb/>
              cauſa, &c.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s id="s.001194">
                <margin.target id="marg310"/>
              Cap. 5. de ae
                <lb/>
              ris grauitate
                <lb/>
              æquilibrio,
                <lb/>
              ſtructura, &
                <lb/>
              vi elaterią
                <lb/>
              eius.</s>
            </p>
            <p type="main">
              <s id="s.001195">Sed pace tanti viri, aio, verum
                <expan abbr="">non</expan>
              eſſe eius aſſump­
                <lb/>
              tum, demonſtrabo enim quod clauſo vitro in G, & a­
                <lb/>
              perto in A vis, qua comprimitur aer FB duplò vali­
                <lb/>
              dior eſt ea, qua comprimitur clauſo vitro in A, & a­
                <lb/>
              perto in G, pro cuius intelligentia præmittenda eſt
                <lb/>
              ſequens. </s>
            </p>
            <p type="main">
              <s id="s.001196">
                <emph type="center"/>
              PROP. CXI.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001197">
                <emph type="center"/>
                <emph type="italics"/>
              Anulus, vel veſica aere plena æquè ab vnica & ſub­
                <lb/>
              dupla potentia comprimitur conſtringiturque,
                <lb/>
              quàm à dupla, ſeu à duabus potentijs illi
                <lb/>
              æqualibus vtrinque anulum, vel
                <lb/>
              veſicam constringentibus.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001198">SIt ABC anulus calybeus, vel veſica aere plena, &
                <lb/>
              primò
                <expan abbr="cõprimatur">comprimatur</expan>
              à duabus
                <expan abbr="potẽtijs">potentijs</expan>
                <expan abbr="cõtrarijs">contrarijs</expan>
              , &
                <lb/>
              interſe æqualibus P, & E, ſeu G. </s>
              <s id="s.001199">Et quia vnaquæque
                <lb/>
                <expan abbr="potẽtiarum">potentiarum</expan>
              P tunc præcisè æquilibratur reſiſtentiæ, </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>