Borelli, Giovanni Alfonso, De motionibus naturalibus a gravitate pendentibus, 1670

List of thumbnails

< >
451
451
452
452
453
453
454
454
455
455
456
456
457
457
458
458
459
459
460
460
< >
page |< < of 579 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.002831">
                <pb pagenum="530" xlink:href="010/01/538.jpg"/>
                <arrow.to.target n="marg750"/>
                <lb/>
              debent, quod fuerat oſtendendum. </s>
            </p>
            <p type="margin">
              <s id="s.002832">
                <margin.target id="marg745"/>
              Cap. 12. dę
                <lb/>
              vacui neceſ­
                <lb/>
              ſitate.</s>
            </p>
            <p type="margin">
              <s id="s.002833">
                <margin.target id="marg746"/>
              De vi per­
                <lb/>
              cuſs. </s>
              <s id="s.002834">cap. 26.</s>
            </p>
            <p type="margin">
              <s id="s.002835">
                <margin.target id="marg747"/>
              Pr. 137.</s>
            </p>
            <p type="margin">
              <s id="s.002836">
                <margin.target id="marg748"/>
              Prn. 135. &
                <lb/>
              136.</s>
            </p>
            <p type="margin">
              <s id="s.002837">
                <margin.target id="marg749"/>
              Pr. 134.</s>
            </p>
            <p type="margin">
              <s id="s.002838">
                <margin.target id="marg750"/>
              Cap. 12. dę
                <lb/>
              vacui neceſ­
                <lb/>
              ſitate.</s>
            </p>
            <p type="main">
              <s id="s.002839">Hinc ſequitur quòd partes minimæ
                <expan abbr="corporũ">corporum</expan>
              flui­
                <lb/>
              dorum, mollium, & flexibilium figuram aliquam̨
                <lb/>
              habere debent, omninò rigidam, duriſſimamquę.
                <lb/>
              </s>
              <s id="s.002840">Pręterea deducitur, quòd in flexibili corpore flexio
                <lb/>
              eius fieri, continuarique poteſt, quouſque ad parti­
                <lb/>
              culas omninò duras perueniatur, quæ poſtea nullo
                <lb/>
              pacto flecti poſſunt; quia quodlibet corpus durum,
                <lb/>
              quantum ſuos fines, ac terminos habere debet, igi­
                <lb/>
              tur neceſſariò aliqua figura comprehenditur, ac ter­
                <lb/>
              minatur, & ideò aut habebit figuram curuam, & ro­
                <lb/>
              tundam, aut polihedram, aut mixtam, neque abſque
                <lb/>
              aliqua ex his concipi poteſt. </s>
            </p>
            <p type="main">
              <s id="s.002841">His præmiſſis vlteriùs procedendo examinemus
                <lb/>
              quænam figuræ ſpatium implere poſſunt, & quæ
                <expan abbr="">non</expan>
              . </s>
            </p>
            <p type="main">
              <s id="s.002842">Vulgare eſt, angulos, qui ab vno
                <expan abbr="pũcto">puncto</expan>
              plani ſub­
                <lb/>
                <arrow.to.target n="marg751"/>
                <lb/>
              iecti circumcirca effici poſſunt, æquales eſſe quatuor
                <lb/>
              rectis angulis planis, ſi verò prædicti anguli minores
                <lb/>
              quatuor rectis fuerint, neceſſariò hiatum, & ſpatium
                <lb/>
              aliquod relinqui debere ab ijſdem angulis non re­
                <lb/>
              pletum. </s>
            </p>
            <p type="margin">
              <s id="s.002843">
                <margin.target id="marg751"/>
              De figuris
                <lb/>
              ſpatium im­
                <lb/>
              plentibus
                <lb/>
              hypotheſes.</s>
            </p>
            <p type="main">
              <s id="s.002844">Paritèr
                <expan abbr="notũ">notum</expan>
              eſt angulos ſolidos, qui ab vno pun­
                <lb/>
              cto ſpatij trinam dimenſionem habentis vndiquę
                <lb/>
              effici poſſunt, æquales eſſe octo angulis rectis ſolidis
                <lb/>
              à qua ſumma ſi defecerint, procùl dubio hiatus, &
                <lb/>
              ſpatia aliqua inania trinam dimenſionem habentią
                <lb/>
              remanere debent. </s>
            </p>
            <p type="main">
              <s id="s.002845">
                <emph type="center"/>
              PROP. CCLXII.
                <emph.end type="center"/>
              </s>
            </p>
            <p type="main">
              <s id="s.002846">
                <emph type="center"/>
                <emph type="italics"/>
              Quænam figuræ planæ, & ſolidæ ſuis angulis
                <expan abbr="ſpatiũ">ſpatium</expan>
              implere
                <lb/>
              posſint.
                <emph.end type="italics"/>
                <emph.end type="center"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>