Borelli, Giovanni Alfonso
,
De motionibus naturalibus a gravitate pendentibus
,
1670
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
501
502
503
504
505
506
507
508
509
510
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 579
>
page
|<
<
of 579
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
pagenum
="
537
"
xlink:href
="
010/01/545.jpg
"/>
<
p
type
="
main
">
<
s
id
="
s.002879
">
<
arrow.to.target
n
="
marg758
"/>
<
lb
/>
fuerat, ergo à temporanea aeris rarefactione, & dila
<
lb
/>
tatione
<
expan
abbr
="
ſpatiũ
">ſpatium</
expan
>
illud
<
expan
abbr
="
vacuũ
">vacuum</
expan
>
repleri omninò non poteſt,
<
lb
/>
& ideo vacuum procùl dubio remanebit. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.002880
">
<
margin.target
id
="
marg758
"/>
Cap. 12. dę
<
lb
/>
vacui neceſ
<
lb
/>
ſitate.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002881
">His declaratis oſtendendum eſt neceſſariò
<
expan
abbr
="
vacuũ
">vacuum</
expan
>
<
lb
/>
diſperſum intra exiguas corporum particulas admit
<
lb
/>
ti debere. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002882
">Quia manifeſtum eſt motum in rerum natura dari
<
lb
/>
intra corpora fluida, ſi oſtenderimus motus aliquos
<
lb
/>
fieri non poſſe abſque vacui intermixtione, erit pro
<
lb
/>
fectò certum vacuum admitti debere. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002883
">
<
emph
type
="
center
"/>
PROP. CCLXVI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002884
">
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
In diſciſsione corporis flexibilis, dum partes tractione ſepa
<
lb
/>
rantur, neceſſariò vacuum intercipitur.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.002885
">ET primò conſideremus
<
expan
abbr
="
motũ
">motum</
expan
>
, quo diuelluntur,
<
lb
/>
ſcinduntur, & ſe parantur duo
<
expan
abbr
="
fragmẽta
">fragmenta</
expan
>
ſaxi du
<
lb
/>
riſſimi ab aliqua valida percuſſione diffracti, vel à vi
<
lb
/>
cunei, aut vectis exſciſſi, in ijs duę ſuperficies
<
expan
abbr
="
fragmẽ-torũ
">fragmen
<
lb
/>
torum</
expan
>
, quę arctiſſimè
<
expan
abbr
="
cõnexę
">connexę</
expan
>
& vnitę
<
expan
abbr
="
erãt
">erant</
expan
>
, licèt in
<
expan
abbr
="
inſtã-ti
">inſtan
<
lb
/>
ti</
expan
>
videantur ab
<
expan
abbr
="
inuicẽ
">inuicem</
expan
>
ſeparari, tamen fatendum eſt
<
lb
/>
in tempore breuiſſimo diuiſionem peragi; atque hoc
<
lb
/>
contingere ex flexione quam
<
expan
abbr
="
patiũtur
">patiuntur</
expan
>
prædicta frag
<
lb
/>
menta, licèt ſint marmorea, aut adamantina, ex qua
<
lb
/>
inflexione fit vt prædicta
<
expan
abbr
="
fragmẽta
">fragmenta</
expan
>
in actu diuiſionis
<
lb
/>
aliquantiſper incuruentur, & ſic non tota ſimùl in
<
expan
abbr
="
in-ſtãti
">in
<
lb
/>
ſtanti</
expan
>
à ſubiecta ſuperficie diuellatur, ſed ſucceſſi
<
lb
/>
uè vna pars poſt aliam; vt ſi duæ laminæ marmoreæ
<
lb
/>
<
expan
abbr
="
vniãtur
">vniantur</
expan
>
duabus planis ſuperficiebus AB, & CB, cum
<
lb
/>
diuellere planum CB aliqua potentia conatur, ſi CB
<
lb
/>
flexibilis ſupponatur, patet quod diſiuncta particula </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>