Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
101
(43)
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(2)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div192
"
type
="
section
"
level
="
1
"
n
="
64
">
<
p
>
<
s
xml:id
="
echoid-s2839
"
xml:space
="
preserve
">
<
pb
o
="
2
"
file
="
0115
"
n
="
115
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
tur, centrum grauitatis eſt idem, quod circuli cen
<
lb
/>
trum.</
s
>
<
s
xml:id
="
echoid-s2840
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2841
"
xml:space
="
preserve
">Sit primo triangulum æquilaterum a b c in circulo de-
<
lb
/>
ſcriptum: </
s
>
<
s
xml:id
="
echoid-s2842
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2843
"
xml:space
="
preserve
">diuiſa a c bifariam in d, ducatur b d. </
s
>
<
s
xml:id
="
echoid-s2844
"
xml:space
="
preserve
">erit in li-
<
lb
/>
nea b d centrum grauitatis triãguli a b c, ex tertia decima
<
lb
/>
primi libri Archimedis de centro grauitatis planorum. </
s
>
<
s
xml:id
="
echoid-s2845
"
xml:space
="
preserve
">Et
<
lb
/>
quoniam linea a b eſt æqualis
<
lb
/>
<
figure
xlink:label
="
fig-0115-01
"
xlink:href
="
fig-0115-01a
"
number
="
70
">
<
image
file
="
0115-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-01
"/>
</
figure
>
lineæ b c; </
s
>
<
s
xml:id
="
echoid-s2846
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2847
"
xml:space
="
preserve
">a d ipſi d c; </
s
>
<
s
xml:id
="
echoid-s2848
"
xml:space
="
preserve
">eſtq́;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2849
"
xml:space
="
preserve
">b d utrique communis: </
s
>
<
s
xml:id
="
echoid-s2850
"
xml:space
="
preserve
">trian-
<
lb
/>
gulum a b d æquale erit trian
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0115-01
"
xlink:href
="
note-0115-01a
"
xml:space
="
preserve
">8. primi.</
note
>
gulo c b d: </
s
>
<
s
xml:id
="
echoid-s2851
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2852
"
xml:space
="
preserve
">anguli angulis æ-
<
lb
/>
quales, qui æqualibus lateri-
<
lb
/>
bus ſubtenduntur. </
s
>
<
s
xml:id
="
echoid-s2853
"
xml:space
="
preserve
">ergo angu
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0115-02
"
xlink:href
="
note-0115-02a
"
xml:space
="
preserve
">13. primi.</
note
>
li ad d utriq; </
s
>
<
s
xml:id
="
echoid-s2854
"
xml:space
="
preserve
">recti ſunt. </
s
>
<
s
xml:id
="
echoid-s2855
"
xml:space
="
preserve
">quòd
<
lb
/>
cum linea b d ſecet a c biſa-
<
lb
/>
riam, & </
s
>
<
s
xml:id
="
echoid-s2856
"
xml:space
="
preserve
">ad angulos rectos; </
s
>
<
s
xml:id
="
echoid-s2857
"
xml:space
="
preserve
">in
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0115-03
"
xlink:href
="
note-0115-03a
"
xml:space
="
preserve
">corol. p@@
<
lb
/>
mæ tertii</
note
>
ipſa b d eſt centrum circuli.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2858
"
xml:space
="
preserve
">quare in eadem b d linea erit
<
lb
/>
centrum grauitatis trianguli, & </
s
>
<
s
xml:id
="
echoid-s2859
"
xml:space
="
preserve
">circuli centrum. </
s
>
<
s
xml:id
="
echoid-s2860
"
xml:space
="
preserve
">Similiter
<
lb
/>
diuiſa a b bifariam in e, & </
s
>
<
s
xml:id
="
echoid-s2861
"
xml:space
="
preserve
">ducta c e, oſtendetur in ipſa utrũ
<
lb
/>
que centrum contineri. </
s
>
<
s
xml:id
="
echoid-s2862
"
xml:space
="
preserve
">ergo ea erunt in puncto, in quo li-
<
lb
/>
neæ b d, c e conueniunt. </
s
>
<
s
xml:id
="
echoid-s2863
"
xml:space
="
preserve
">trianguli igitur a b c centrum gra
<
lb
/>
uitatis eſt idem, quod circuli centrum.</
s
>
<
s
xml:id
="
echoid-s2864
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2865
"
xml:space
="
preserve
">Sit quadratum a b c d in cir-
<
lb
/>
<
figure
xlink:label
="
fig-0115-02
"
xlink:href
="
fig-0115-02a
"
number
="
71
">
<
image
file
="
0115-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0115-02
"/>
</
figure
>
culo deſcriptum: </
s
>
<
s
xml:id
="
echoid-s2866
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2867
"
xml:space
="
preserve
">ducantur
<
lb
/>
a c, b d, quæ conueniant in e. </
s
>
<
s
xml:id
="
echoid-s2868
"
xml:space
="
preserve
">er-
<
lb
/>
go punctum e eſt centrum gra
<
lb
/>
uitatis quadrati, ex decima eiuſ
<
lb
/>
dem libri Archimedis. </
s
>
<
s
xml:id
="
echoid-s2869
"
xml:space
="
preserve
">Sed cum
<
lb
/>
omnes anguli ad a b c d recti
<
lb
/>
ſint; </
s
>
<
s
xml:id
="
echoid-s2870
"
xml:space
="
preserve
">erit a b c femicirculus:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2871
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0115-04
"
xlink:href
="
note-0115-04a
"
xml:space
="
preserve
">51. tortil.</
note
>
itemq́; </
s
>
<
s
xml:id
="
echoid-s2872
"
xml:space
="
preserve
">b c d: </
s
>
<
s
xml:id
="
echoid-s2873
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2874
"
xml:space
="
preserve
">propterea li-
<
lb
/>
neæ a c, b d diametri circuli:</
s
>
<
s
xml:id
="
echoid-s2875
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>