Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
101
(43)
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(27)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div252
"
type
="
section
"
level
="
1
"
n
="
86
">
<
p
>
<
s
xml:id
="
echoid-s4095
"
xml:space
="
preserve
">
<
pb
o
="
27
"
file
="
0165
"
n
="
165
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
proportionem habet, quam baſis a b c d ad baſim g h k l:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4096
"
xml:space
="
preserve
">ſi enim intelligantur duæ pyramides a b c d e, g h k l m, ha-
<
lb
/>
bebunt hæ inter ſe proportionem eandem, quam ipſarum
<
lb
/>
baſes ex ſexta duodecimi elementorum. </
s
>
<
s
xml:id
="
echoid-s4097
"
xml:space
="
preserve
">Sed ut baſis a b c d
<
lb
/>
ad g h K l baſim, ita linea o ad lineam p; </
s
>
<
s
xml:id
="
echoid-s4098
"
xml:space
="
preserve
">hoc eſt ad lineam q
<
lb
/>
ei æqualem. </
s
>
<
s
xml:id
="
echoid-s4099
"
xml:space
="
preserve
">ergo priſma a e ad priſma g m eſt, ut linea o
<
lb
/>
ad lineam q. </
s
>
<
s
xml:id
="
echoid-s4100
"
xml:space
="
preserve
">proportio autem o ad q cõpoſita eſt ex pro-
<
lb
/>
portione o ad p, & </
s
>
<
s
xml:id
="
echoid-s4101
"
xml:space
="
preserve
">ex proportione p ad q. </
s
>
<
s
xml:id
="
echoid-s4102
"
xml:space
="
preserve
">quare priſma
<
lb
/>
a e ad priſma g m, & </
s
>
<
s
xml:id
="
echoid-s4103
"
xml:space
="
preserve
">idcirco pyramis a b c d e, ad pyrami-
<
lb
/>
dem g h K l m proportionem habet ex eiſdem proportio-
<
lb
/>
nibus compoſitam, uidelicet ex proportione baſis a b c d
<
lb
/>
ad baſim g h _K_ l, & </
s
>
<
s
xml:id
="
echoid-s4104
"
xml:space
="
preserve
">ex proportione altitudinis e f ad m n al
<
lb
/>
titudinem. </
s
>
<
s
xml:id
="
echoid-s4105
"
xml:space
="
preserve
">Quòd ſi lineæ e f, m n inæquales ponantur, ſit
<
lb
/>
e f minor: </
s
>
<
s
xml:id
="
echoid-s4106
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4107
"
xml:space
="
preserve
">ut e f ad m n, ita fiat linea p ad lineam u: </
s
>
<
s
xml:id
="
echoid-s4108
"
xml:space
="
preserve
">de
<
lb
/>
<
figure
xlink:label
="
fig-0165-01
"
xlink:href
="
fig-0165-01a
"
number
="
121
">
<
image
file
="
0165-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0165-01
"/>
</
figure
>
inde ab ipſa m n abſcindatur r n æqualis e f: </
s
>
<
s
xml:id
="
echoid-s4109
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4110
"
xml:space
="
preserve
">per r duca-
<
lb
/>
tur planum, quod oppoſitis planis æquidiſtans faciat ſe-
<
lb
/>
ctionem s t. </
s
>
<
s
xml:id
="
echoid-s4111
"
xml:space
="
preserve
">erit priſma a e, ad priſma g t, ut baſis a b c d
<
lb
/>
ad baſim g h k l; </
s
>
<
s
xml:id
="
echoid-s4112
"
xml:space
="
preserve
">hoc eſt ut o ad p: </
s
>
<
s
xml:id
="
echoid-s4113
"
xml:space
="
preserve
">ut autem priſma g t ad
<
lb
/>
priſma g m, ita altitudo r n; </
s
>
<
s
xml:id
="
echoid-s4114
"
xml:space
="
preserve
">hoc eſt e f ad altitudinẽ m n;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4115
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-0165-01
"
xlink:href
="
note-0165-01a
"
xml:space
="
preserve
">20. huius</
note
>
uidelicet linea p ad lineam u. </
s
>
<
s
xml:id
="
echoid-s4116
"
xml:space
="
preserve
">ergo ex æquali priſma a e ad
<
lb
/>
priſma g m eſt, ut linea o ad ipſam u. </
s
>
<
s
xml:id
="
echoid-s4117
"
xml:space
="
preserve
">Sed proportio o ad
<
lb
/>
u cõpoſita eſt ex proportione o ad p, quæ eſt baſis a b c d
<
lb
/>
ad baſim g h k l; </
s
>
<
s
xml:id
="
echoid-s4118
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4119
"
xml:space
="
preserve
">ex proportione p ad u, quæ eſt altitudi-
<
lb
/>
nis e f ad altitudinem m n. </
s
>
<
s
xml:id
="
echoid-s4120
"
xml:space
="
preserve
">priſma igitur a e ad priſma g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>