Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
11
11
12
12
13
13 (1)
14
14
15
15 (2)
16
16
17
17 (3)
18
18
19
19 (4)
20
20
< >
page |< < (33) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div263" type="section" level="1" n="90">
          <p>
            <s xml:id="echoid-s4406" xml:space="preserve">
              <pb o="33" file="0177" n="177" rhead="DE CENTRO GRAVIT. SOLID."/>
            quod diuidat fruſtum in duo fruſta triangulares baſes ha-
              <lb/>
            bentia, uidelicet in fruſtum a b d e f h, & </s>
            <s xml:id="echoid-s4407" xml:space="preserve">in fruſtũ b c d f g h.
              <lb/>
            </s>
            <s xml:id="echoid-s4408" xml:space="preserve">erit triangulum k l n proportionale inter triangula a b d,
              <lb/>
            e f h: </s>
            <s xml:id="echoid-s4409" xml:space="preserve">& </s>
            <s xml:id="echoid-s4410" xml:space="preserve">triangulum l m n proportionale inter b c d, f g h. </s>
            <s xml:id="echoid-s4411" xml:space="preserve">
              <lb/>
            ſed pyramis æque alta, cuius baſis conſtat ex tribus trian-
              <lb/>
            gulis a b d, k l n, e f h, demonſtrata
              <lb/>
              <figure xlink:label="fig-0177-01" xlink:href="fig-0177-01a" number="132">
                <image file="0177-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0177-01"/>
              </figure>
            eſt ſruſto a b d e f h æqualis. </s>
            <s xml:id="echoid-s4412" xml:space="preserve">& </s>
            <s xml:id="echoid-s4413" xml:space="preserve">ſi-
              <lb/>
            militer pyramis, cuius baſis con-
              <lb/>
            ſtat ex triangulis b c d, l m n, f g h
              <lb/>
            æqualis fruſto b c d f g h: </s>
            <s xml:id="echoid-s4414" xml:space="preserve">compo-
              <lb/>
            nuntur autem tria quadrilatera a
              <lb/>
            b c d, _k_ l m n, e f g h è ſex triangu-
              <lb/>
            lis iam dictis. </s>
            <s xml:id="echoid-s4415" xml:space="preserve">pyramis igitur ba-
              <lb/>
            ſim habens æqualem tribus qua-
              <lb/>
            drilateris, & </s>
            <s xml:id="echoid-s4416" xml:space="preserve">altitudinem eandem
              <lb/>
            ipſi fruſto a g eſt æqualis. </s>
            <s xml:id="echoid-s4417" xml:space="preserve">Eodem
              <lb/>
            modo illud demõſtrabitur in aliis
              <lb/>
            eiuſmodi fruſtis.</s>
            <s xml:id="echoid-s4418" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4419" xml:space="preserve">Sit fruſtum coni, uel coni, uel coni portionis a d; </s>
            <s xml:id="echoid-s4420" xml:space="preserve">cuius maior ba-
              <lb/>
            ſis circulus, uel ellipſis circa diametrum a b; </s>
            <s xml:id="echoid-s4421" xml:space="preserve">minor circa
              <lb/>
            c d: </s>
            <s xml:id="echoid-s4422" xml:space="preserve">& </s>
            <s xml:id="echoid-s4423" xml:space="preserve">ſecetur plano, quod baſibus æquidiſtet, faciatq; </s>
            <s xml:id="echoid-s4424" xml:space="preserve">ſe-
              <lb/>
            ctionem circulum, uel ellipſim circa diametrum e f, ita ut
              <lb/>
            inter circulos, uel ellipſes a b, c d ſit proportionalis. </s>
            <s xml:id="echoid-s4425" xml:space="preserve">Dico
              <lb/>
            conum, uel coni portionem, cuius baſis eſt æqualis tribus
              <lb/>
            circulis, uel tribus ellipſibus a b, e f, c d; </s>
            <s xml:id="echoid-s4426" xml:space="preserve">& </s>
            <s xml:id="echoid-s4427" xml:space="preserve">altitudo eadem,
              <lb/>
            quæ fruſti a d, ipſi fruſto æqualem eſſe. </s>
            <s xml:id="echoid-s4428" xml:space="preserve">producatur enim
              <lb/>
            fruſti ſuperficies quouſque coeat in unum punctum, quod
              <lb/>
            ſit g: </s>
            <s xml:id="echoid-s4429" xml:space="preserve">& </s>
            <s xml:id="echoid-s4430" xml:space="preserve">coni, uel coni portionis a g b axis ſit g h, occurrens
              <lb/>
            planis a b, e f, c d in punctis h _k_ l: </s>
            <s xml:id="echoid-s4431" xml:space="preserve">circa circulum uero de-
              <lb/>
            ſcribatur quadratum m n o p, & </s>
            <s xml:id="echoid-s4432" xml:space="preserve">circa ellipſim rectangulũ
              <lb/>
            m n o p, quod ex ipſius diametris conſtat: </s>
            <s xml:id="echoid-s4433" xml:space="preserve">iunctisq; </s>
            <s xml:id="echoid-s4434" xml:space="preserve">g m,
              <lb/>
            g n, g o, g p, ex eodem uertice intelligatur pyramis baſim
              <lb/>
            habens dictum quadratum, uel rectangulum: </s>
            <s xml:id="echoid-s4435" xml:space="preserve">& </s>
            <s xml:id="echoid-s4436" xml:space="preserve">plana in
              <lb/>
            quibus ſunt circuli, uel ellipſes e f, c d uſque ad eius </s>
          </p>
        </div>
      </text>
    </echo>