Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
11
11
12
12
13
13 (1)
14
14
15
15 (2)
16
16
17
17 (3)
18
18
19
19 (4)
20
20
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div44" type="section" level="1" n="23">
          <pb file="0034" n="34" rhead="ARCHIMEDIS"/>
          <p style="it">
            <s xml:id="echoid-s655" xml:space="preserve">_Erit r o minor, quàm, quæ uſque ad axem]_ Ex decima
              <lb/>
              <note position="left" xlink:label="note-0034-01" xlink:href="note-0034-01a" xml:space="preserve">E</note>
            propoſitione quinti libri elementorum. </s>
            <s xml:id="echoid-s656" xml:space="preserve">Linea, quæ uſque ad axem
              <lb/>
            apud Archimedem, eſt dimidia eius, iuxta quam poſſunt, quæ à ſe-
              <lb/>
            ctione ducuntur; </s>
            <s xml:id="echoid-s657" xml:space="preserve">ut ex quarta propoſitione libri de conoidibus, & </s>
            <s xml:id="echoid-s658" xml:space="preserve">
              <lb/>
            ſphæroidibus apparet. </s>
            <s xml:id="echoid-s659" xml:space="preserve">cur uero ita appellata ſit, nos in commentarijs
              <lb/>
            in eam editis tradidimus.</s>
            <s xml:id="echoid-s660" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s661" xml:space="preserve">_Quare angulus r p ω acutus erit]_ producatur linea n o ad
              <lb/>
              <note position="left" xlink:label="note-0034-02" xlink:href="note-0034-02a" xml:space="preserve">F</note>
            h, ut ſit r h æqualis ei, quæ uſque ad axem. </s>
            <s xml:id="echoid-s662" xml:space="preserve">ſi igitur à puncto h du-
              <lb/>
            catur linea ad rectos angulos ipſi n h, conueniet cum f p extra ſe-
              <lb/>
            ctionem: </s>
            <s xml:id="echoid-s663" xml:space="preserve">ducta enim per o ipſi a l æquidiſtans, extra ſectionem ca
              <lb/>
            dit ex decima ſepti-
              <lb/>
              <figure xlink:label="fig-0034-01" xlink:href="fig-0034-01a" number="20">
                <image file="0034-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0034-01"/>
              </figure>
            ma primi libri coni-
              <lb/>
            corum. </s>
            <s xml:id="echoid-s664" xml:space="preserve">Itaque con-
              <lb/>
            ueniat in u. </s>
            <s xml:id="echoid-s665" xml:space="preserve">& </s>
            <s xml:id="echoid-s666" xml:space="preserve">quo
              <lb/>
            niam f p est æqui-
              <lb/>
            distans diametro;
              <lb/>
            </s>
            <s xml:id="echoid-s667" xml:space="preserve">h u uero ad diame-
              <lb/>
            trum perpendicula-
              <lb/>
            ris; </s>
            <s xml:id="echoid-s668" xml:space="preserve">& </s>
            <s xml:id="echoid-s669" xml:space="preserve">r h æqualis
              <lb/>
            ei, quæ uſq; </s>
            <s xml:id="echoid-s670" xml:space="preserve">ad axẽ,
              <lb/>
            linea à puncto r ad
              <lb/>
            u ducta angulos re-
              <lb/>
            ctos faciet cum ea, quæ ſectionem in puncto p contingit, hoc eſt cum
              <lb/>
            k ω, ut mox demonstrabitur. </s>
            <s xml:id="echoid-s671" xml:space="preserve">quare perpendicularis r t inter p & </s>
            <s xml:id="echoid-s672" xml:space="preserve">
              <lb/>
            ω cadet; </s>
            <s xml:id="echoid-s673" xml:space="preserve">erítque r p ω angulus acutus.</s>
            <s xml:id="echoid-s674" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s675" xml:space="preserve">Sit rectanguli coni ſectio, ſeu parabole a b c, cuius
              <lb/>
            diameter b d: </s>
            <s xml:id="echoid-s676" xml:space="preserve">atque ipſam contingat linea e f in pun-
              <lb/>
            cto g: </s>
            <s xml:id="echoid-s677" xml:space="preserve">ſumatur autem in diametro b d linea h k æqua-
              <lb/>
            lis ei, quæ uſque ad axem: </s>
            <s xml:id="echoid-s678" xml:space="preserve">& </s>
            <s xml:id="echoid-s679" xml:space="preserve">per g ducta g l, diame-
              <lb/>
            tro æquidistante, à puncto _k_ ad rectos angulos ipſi b d
              <lb/>
            ducatur _k_ m, ſecans g l in m. </s>
            <s xml:id="echoid-s680" xml:space="preserve">Dico lineam ab h </s>
          </p>
        </div>
      </text>
    </echo>