Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
121
(5)
122
123
(6)
124
125
(7)
126
127
(8)
128
129
(9)
130
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(17)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div224
"
type
="
section
"
level
="
1
"
n
="
74
">
<
pb
o
="
17
"
file
="
0145
"
n
="
145
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
</
div
>
<
div
xml:id
="
echoid-div226
"
type
="
section
"
level
="
1
"
n
="
75
">
<
head
xml:id
="
echoid-head82
"
xml:space
="
preserve
">PROBLEMA I. PROPOSITIO X.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3677
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Data</
emph
>
qualibet pyramide, fieri poteſt, ut fi-
<
lb
/>
gura ſolida in ipſa in ſcribatur, & </
s
>
<
s
xml:id
="
echoid-s3678
"
xml:space
="
preserve
">altera circũſcri-
<
lb
/>
batur ex priſmatibus æqualem aItitudinem ha-
<
lb
/>
bẽtibus, ita ut cir cumſcripta inſcriptam excedat
<
lb
/>
magnitudine, quæ minor ſit quacũque ſolida ma
<
lb
/>
gnitudine propoſita.</
s
>
<
s
xml:id
="
echoid-s3679
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
99
">
<
image
file
="
0145-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0145-01
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s3680
"
xml:space
="
preserve
">Sit pyramis, cuius baſis
<
lb
/>
triangulũ a b c; </
s
>
<
s
xml:id
="
echoid-s3681
"
xml:space
="
preserve
">axis d e.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3682
"
xml:space
="
preserve
">Sitq; </
s
>
<
s
xml:id
="
echoid-s3683
"
xml:space
="
preserve
">priſma, quod eandẽ
<
lb
/>
baſim habeat, & </
s
>
<
s
xml:id
="
echoid-s3684
"
xml:space
="
preserve
">axem eun
<
lb
/>
dem. </
s
>
<
s
xml:id
="
echoid-s3685
"
xml:space
="
preserve
">Itaque hoc priſma-
<
lb
/>
te continenter ſecto bifa-
<
lb
/>
riam, plano baſi æquidiftã
<
lb
/>
te, relinquetur tãdem priſ
<
lb
/>
ma quoddam minus pro-
<
lb
/>
poſita magnitudine: </
s
>
<
s
xml:id
="
echoid-s3686
"
xml:space
="
preserve
">quod
<
lb
/>
quidem baſim eandem ha
<
lb
/>
beat, quam pyramis, & </
s
>
<
s
xml:id
="
echoid-s3687
"
xml:space
="
preserve
">a-
<
lb
/>
xem e f. </
s
>
<
s
xml:id
="
echoid-s3688
"
xml:space
="
preserve
">diuidatur d e in
<
lb
/>
partes æquales ipſi e f in
<
lb
/>
punctis g h k l m n: </
s
>
<
s
xml:id
="
echoid-s3689
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3690
"
xml:space
="
preserve
">per
<
lb
/>
diuiſiones plana ducãtur: </
s
>
<
s
xml:id
="
echoid-s3691
"
xml:space
="
preserve
">
<
lb
/>
quæ baſibus æquidiſtent,
<
lb
/>
erunt ſectiones, triangula
<
lb
/>
ipſi a b c ſimilia, ut proxi-
<
lb
/>
me oſtendimus. </
s
>
<
s
xml:id
="
echoid-s3692
"
xml:space
="
preserve
">ab uno
<
lb
/>
quoque autẽ horum trian
<
lb
/>
gulorum duo priſmata cõ
<
lb
/>
ſtruantur; </
s
>
<
s
xml:id
="
echoid-s3693
"
xml:space
="
preserve
">unum quidem
<
lb
/>
ad partes e; </
s
>
<
s
xml:id
="
echoid-s3694
"
xml:space
="
preserve
">alterum </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>