Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
141
(15)
142
143
(15)
144
(16)
145
(17)
146
147
(18)
148
149
(19)
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3603
"
xml:space
="
preserve
">
<
pb
file
="
0142
"
n
="
142
"
rhead
="
FED. COMMANDINI
"/>
<
figure
xlink:label
="
fig-0142-01
"
xlink:href
="
fig-0142-01a
"
number
="
96
">
<
image
file
="
0142-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0142-01
"/>
</
figure
>
linea x cum ſit minor circulo, uel ellipſi, eſt etiam minor fi-
<
lb
/>
gura rectilinea y. </
s
>
<
s
xml:id
="
echoid-s3604
"
xml:space
="
preserve
">ergo pyramis x pyramide y minor erit.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3605
"
xml:space
="
preserve
">Sed & </
s
>
<
s
xml:id
="
echoid-s3606
"
xml:space
="
preserve
">maior; </
s
>
<
s
xml:id
="
echoid-s3607
"
xml:space
="
preserve
">quod fieri nõ poteſt. </
s
>
<
s
xml:id
="
echoid-s3608
"
xml:space
="
preserve
">At ſi conus, uel coni por
<
lb
/>
tio x ponatur minor pyramide y: </
s
>
<
s
xml:id
="
echoid-s3609
"
xml:space
="
preserve
">ſit alter conus æque al-
<
lb
/>
tus, uel altera coni portio χ ipſi pyramidi y æqualis. </
s
>
<
s
xml:id
="
echoid-s3610
"
xml:space
="
preserve
">erit
<
lb
/>
eius baſis circulus, uel ellipſis maior circulo, uel ellipſi x,
<
lb
/>
quorum exceſſus ſit ſpacium ω. </
s
>
<
s
xml:id
="
echoid-s3611
"
xml:space
="
preserve
">Siigitur in circulo, uel elli-
<
lb
/>
pſi χ figura rectilinea deſcribatur, ita ut portiones relictæ
<
lb
/>
ſint ω ſpacio minores, eiuſinodi figura adhuc maior erit cir
<
lb
/>
culo, uel ellipſi x, hoc eſt figura rectilinea _y_. </
s
>
<
s
xml:id
="
echoid-s3612
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3613
"
xml:space
="
preserve
">p_y_ramis in
<
lb
/>
ea conſtituta minor cono, uel coni portione χ, hoc eſt mi-
<
lb
/>
nor p_y_ramide_y_. </
s
>
<
s
xml:id
="
echoid-s3614
"
xml:space
="
preserve
">eſt ergo ut χ figura rectilinea ad figuram
<
lb
/>
rectilineam _y_, ita pyramis χ ad pyramidem _y_. </
s
>
<
s
xml:id
="
echoid-s3615
"
xml:space
="
preserve
">quare cum
<
lb
/>
figura rectilinea χ ſit maior figura_y_: </
s
>
<
s
xml:id
="
echoid-s3616
"
xml:space
="
preserve
">erit & </
s
>
<
s
xml:id
="
echoid-s3617
"
xml:space
="
preserve
">p_y_ramis χ p_y_-
<
lb
/>
ramide_y_ maior. </
s
>
<
s
xml:id
="
echoid-s3618
"
xml:space
="
preserve
">ſed erat minor; </
s
>
<
s
xml:id
="
echoid-s3619
"
xml:space
="
preserve
">quod rurſus fieri non po-
<
lb
/>
teſt. </
s
>
<
s
xml:id
="
echoid-s3620
"
xml:space
="
preserve
">non eſt igitur conus, uel coni portio x neque maior,
<
lb
/>
neque minor p_y_ramide_y_. </
s
>
<
s
xml:id
="
echoid-s3621
"
xml:space
="
preserve
">ergo ipſi neceſſario eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3622
"
xml:space
="
preserve
">
<
lb
/>
Itaque quoniam ut conus ad conum, uel coni portio ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>