Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
141
(15)
142
143
(15)
144
(16)
145
(17)
146
147
(18)
148
149
(19)
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(26)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div247
"
type
="
section
"
level
="
1
"
n
="
85
">
<
p
>
<
s
xml:id
="
echoid-s4044
"
xml:space
="
preserve
">
<
pb
o
="
26
"
file
="
0163
"
n
="
163
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
matis a e axis g h; </
s
>
<
s
xml:id
="
echoid-s4045
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4046
"
xml:space
="
preserve
">priſmatis a f axis l h. </
s
>
<
s
xml:id
="
echoid-s4047
"
xml:space
="
preserve
">Dico priſma
<
lb
/>
a e ad priſma a f eam proportionem habere, quam g h ad
<
lb
/>
h l. </
s
>
<
s
xml:id
="
echoid-s4048
"
xml:space
="
preserve
">ducantur à punctis g l perpendiculares ad baſis pla-
<
lb
/>
num g K, l m: </
s
>
<
s
xml:id
="
echoid-s4049
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4050
"
xml:space
="
preserve
">iungantur k h,
<
lb
/>
<
figure
xlink:label
="
fig-0163-01
"
xlink:href
="
fig-0163-01a
"
number
="
118
">
<
image
file
="
0163-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-01
"/>
</
figure
>
h m. </
s
>
<
s
xml:id
="
echoid-s4051
"
xml:space
="
preserve
">Itaque quoniam anguli g h
<
lb
/>
k, l h m ſunt æquales, ſimiliter ut
<
lb
/>
ſupra demonſtrabimus, triangu-
<
lb
/>
la g h K, l h m ſimilia eſſe; </
s
>
<
s
xml:id
="
echoid-s4052
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4053
"
xml:space
="
preserve
">ut g
<
lb
/>
K adlm, ita g h ad h l. </
s
>
<
s
xml:id
="
echoid-s4054
"
xml:space
="
preserve
">habet au
<
lb
/>
tem priſma a e ad priſma a f ean
<
lb
/>
dem proportionem, quam altitu
<
lb
/>
do g k ad altitudinem l m, ſicuti
<
lb
/>
demonſtratum eſt. </
s
>
<
s
xml:id
="
echoid-s4055
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s4056
"
xml:space
="
preserve
">ean-
<
lb
/>
dem habebit, quam g h, ad h l. </
s
>
<
s
xml:id
="
echoid-s4057
"
xml:space
="
preserve
">py
<
lb
/>
ramis igitur a b c d g ad pyrami-
<
lb
/>
dem a b c d l eandem proportio-
<
lb
/>
nem habebit, quam axis g h ad h l axem.</
s
>
<
s
xml:id
="
echoid-s4058
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
119
">
<
image
file
="
0163-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0163-02
"/>
</
figure
>
<
p
>
<
s
xml:id
="
echoid-s4059
"
xml:space
="
preserve
">Denique ſint priſmata a e, k o in æqualibus baſibus a b
<
lb
/>
c d, k l m n conſtituta; </
s
>
<
s
xml:id
="
echoid-s4060
"
xml:space
="
preserve
">quorum axes cum baſibus æquales
<
lb
/>
faciant angulos: </
s
>
<
s
xml:id
="
echoid-s4061
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s4062
"
xml:space
="
preserve
">priſmatis a e axis f g, & </
s
>
<
s
xml:id
="
echoid-s4063
"
xml:space
="
preserve
">altitudo f h:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4064
"
xml:space
="
preserve
">priſmatis autem k o axis p q, & </
s
>
<
s
xml:id
="
echoid-s4065
"
xml:space
="
preserve
">altitudo p r. </
s
>
<
s
xml:id
="
echoid-s4066
"
xml:space
="
preserve
">Dico priſma
<
lb
/>
a e ad priſma k o ita eſſe, ut f g ad p q. </
s
>
<
s
xml:id
="
echoid-s4067
"
xml:space
="
preserve
">iunctis enim g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>