Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
141
141 (15)
142
142
143
143 (15)
144
144 (16)
145
145 (17)
146
146
147
147 (18)
148
148
149
149 (19)
150
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="87">
          <p>
            <s xml:space="preserve">
              <pb file="0170" n="170" rhead="FED. COMMANDINI"/>
            & </s>
            <s xml:space="preserve">denique punctum h pyramidis a b c d e f grauitatis eſſe
              <lb/>
            centrum, & </s>
            <s xml:space="preserve">ita in aliis.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0168-01" xlink:href="note-0168-01a" xml:space="preserve">2. ſexti.</note>
            <figure xlink:label="fig-0169-01" xlink:href="fig-0169-01a">
              <image file="0169-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0169-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Sit conus, uel coni portio axem habens b d: </s>
            <s xml:space="preserve">ſecetur que
              <lb/>
            plano per axem, quod ſectionem faciat triangulum a b c:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b d axis diuidatur in e, ita ut b e ipſius e d ſit tripla. </s>
            <s xml:space="preserve">
              <lb/>
            Dico punctum e coni, uel coni portionis, grauitatis
              <lb/>
            eſſe centrum. </s>
            <s xml:space="preserve">Sienim fieri poteſt, ſit centrum f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">pro-
              <lb/>
            ducatur e f extra figuram in g. </s>
            <s xml:space="preserve">quam uero proportionem
              <lb/>
            habet g e ad e f, habeat baſis coni, uel coni portionis, hoc
              <lb/>
            eſt circulus, uel ellipſis circa diametrum a c ad aliud ſpa-
              <lb/>
            cium, in quo h. </s>
            <s xml:space="preserve">Itaque in circulo, uel ellipſi plane deſcri-
              <lb/>
            batur rectilinea figura a k l m c n o p, ita ut quæ relinquũ-
              <lb/>
            tur portiones ſint minores ſpacio h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">intelligatur pyra-
              <lb/>
            mis baſim habens rectilineam figuram a K l m c n o p, & </s>
            <s xml:space="preserve">
              <lb/>
            axem b d; </s>
            <s xml:space="preserve">cuius quidem grauitatis centrum erit punctum
              <lb/>
            e, ut iam demonſtrauimus. </s>
            <s xml:space="preserve">Et quoniam portiones ſunt
              <lb/>
            minores ſpacio h, circulus, uel ellipſis ad portiones ma-
              <lb/>
              <anchor type="figure" xlink:label="fig-0170-01a" xlink:href="fig-0170-01"/>
            iorem proportionem habet, quam g e a d e f. </s>
            <s xml:space="preserve">ſed ut circu-
              <lb/>
            lus, uel ellipſis ad figuram rectilineam ſibi inſcriptam, ita
              <lb/>
            conus, uel coni portio ad pyramidem, quæ figuram rectili-
              <lb/>
            neam pro baſi habet; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">altitudinem æqualem: </s>
            <s xml:space="preserve">etenim ſu-</s>
          </p>
        </div>
      </text>
    </echo>