Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
141
(15)
142
143
(15)
144
(16)
145
(17)
146
147
(18)
148
149
(19)
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(35)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
91
">
<
pb
o
="
35
"
file
="
0181
"
n
="
181
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:space
="
preserve
">Sit ſruſtum a e a pyramide, quæ triangularem baſim ha-
<
lb
/>
beat abſciſſum: </
s
>
<
s
xml:space
="
preserve
">cuius maior baſis triangulum a b c, minor
<
lb
/>
d e f; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axis g h. </
s
>
<
s
xml:space
="
preserve
">ducto autem plano per axem & </
s
>
<
s
xml:space
="
preserve
">per lineã
<
lb
/>
d a, quod ſectionem faciat d a k l quadrilaterum; </
s
>
<
s
xml:space
="
preserve
">puncta
<
lb
/>
K l lineas b c, e f bifariam ſecabunt. </
s
>
<
s
xml:space
="
preserve
">nam cum g h ſit axis
<
lb
/>
ſruſti: </
s
>
<
s
xml:space
="
preserve
">erit h centrum grauitatis trianguli a b c: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">g
<
lb
/>
centrum trianguli d e f: </
s
>
<
s
xml:space
="
preserve
">cen-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0181-01a
"
xlink:href
="
fig-0181-01
"/>
<
anchor
type
="
note
"
xlink:label
="
note-0181-01a
"
xlink:href
="
note-0181-01
"/>
trum uero cuiuslibet triangu
<
lb
/>
li eſt in recta linea, quæ ab an-
<
lb
/>
gulo ipſius ad dimidiã baſim
<
lb
/>
ducitur ex decimatertia primi
<
lb
/>
libri Archimedis de cẽtro gra
<
lb
/>
uitatis planorum. </
s
>
<
s
xml:space
="
preserve
">quare cen-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0181-02a
"
xlink:href
="
note-0181-02
"/>
trũ grauitatis trapezii b c f e
<
lb
/>
eſt in linea _K_ l, quod ſit m: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">à
<
lb
/>
puncto m ad axem ducta m n
<
lb
/>
ipſi a k, uel d l æquidiſtante;
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">erit axis g h diuiſus in portio-
<
lb
/>
nes g n, n h, quas diximus: </
s
>
<
s
xml:space
="
preserve
">ean
<
lb
/>
dem enim proportionem ha-
<
lb
/>
bet g n ad n h, quã l m ad m _k_. </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
At l m ad m K habet eam, quã
<
lb
/>
duplum lateris maioris baſis
<
lb
/>
b c una cum latere minoris e f
<
lb
/>
ad duplum lateris e f unà cum
<
lb
/>
later b c, ex ultima eiuſdem
<
lb
/>
libri Archimedis. </
s
>
<
s
xml:space
="
preserve
">Itaque à li-
<
lb
/>
nea n g abſcindatur, quarta
<
lb
/>
pars, quæ ſit n p: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ab axe h g abſcindatur itidem
<
lb
/>
quarta pars h o: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quam proportionem habet fruſtum ad
<
lb
/>
pyramidem, cuius maior baſis eſt triangulum a b c, & </
s
>
<
s
xml:space
="
preserve
">alti-
<
lb
/>
tudo ipſi æqualis; </
s
>
<
s
xml:space
="
preserve
">habeat o p ad p q. </
s
>
<
s
xml:space
="
preserve
">Dico centrum graui-
<
lb
/>
tatis fruſti eſſe in linea p o, & </
s
>
<
s
xml:space
="
preserve
">in puncto q. </
s
>
<
s
xml:space
="
preserve
">namque ipſum
<
lb
/>
eſſe in linea g h manifeſte conſtat. </
s
>
<
s
xml:space
="
preserve
">protractis enim fruſti pla</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>