Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
151
151 (20)
152
152
153
153 (21)
154
154
155
155 (22)
156
156
157
157 (23)
158
158
159
159 (24)
160
160
< >
page |< < (28) of 213 > >|
16728DE CENTRO GRAVIT. SOLID. uel coni portionis axis à centro grauitatis ita diui
ditur, ut pars, quæ terminatur ad uerticem reli-
quæ partis, quæ ad baſim, ſit tripla.
Sit pyramis, cuius baſis triangulum a b c; axis d e; & gra
uitatis centrum _K_.
Dico lineam d k ipſius _K_ e triplam eſſe.
trianguli enim b d c centrum grauitatis ſit punctum f; triã
guli a d c centrũ g;
& trianguli a d b ſit h: & iungantur a f,
b g, c h.
Quoniam igitur centrũ grauitatis pyramidis in axe
cõſiſtit:
ſuntq; d e, a f, b g, c h eiuſdẽ pyramidis axes: conue
1117. huíus nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
Itaque animo concipiamus hanc pyramidem diuiſam in
quatuor pyramides, quarum baſes ſint ipſa pyramidis
triangula;
& axis pun-
88[Handwritten note 8]123[Figure 123] ctum k quæ quidem py-
ramides inter ſe æquales
ſunt, ut demõſtrabitur.
Ducatur enĩ per lineas
d c, d e planum ſecãs, ut
ſit ipſius, &
baſis a b c cõ
munis ſectio recta linea
c e l:
eiuſdẽ uero & triã-
guli a d b ſitlinea d h l.

erit linea a l æqualis ipſi
l b:
nam centrum graui-
tatis trianguli conſiſtit
in linea, quæ ab angulo
ad dimidiam baſim per-
ducitur, ex tertia deci-
ma Archimedis.
quare
221. ſexti. triangulum a c l æquale
eſt triangulo b c l:
& propterea pyramis, cuius baſis trian-
gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
triangulum, &
idem uertex. pyramides enim, quæ ab eodẽ
335. duode-
cimi.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index