Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
151
(20)
152
153
(21)
154
155
(22)
156
157
(23)
158
159
(24)
160
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(24)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div242
"
type
="
section
"
level
="
1
"
n
="
84
">
<
p
>
<
s
xml:id
="
echoid-s3954
"
xml:space
="
preserve
">
<
pb
o
="
24
"
file
="
0159
"
n
="
159
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
los contineant. </
s
>
<
s
xml:id
="
echoid-s3955
"
xml:space
="
preserve
">Dico ſolidum a b ad ſolidum a c eãdem ha
<
lb
/>
bere proportionem, quam axis d e ad axem e f. </
s
>
<
s
xml:id
="
echoid-s3956
"
xml:space
="
preserve
">Sienim
<
lb
/>
axes in eadem recta linea fuerint conſtituti, hæc duo ſoli-
<
lb
/>
da, in unum, atque i @m ſolidum conuenient. </
s
>
<
s
xml:id
="
echoid-s3957
"
xml:space
="
preserve
">quare ex
<
lb
/>
iis, quæ proxime tradita ſunt, habebit ſolidum a b ad ſo-
<
lb
/>
lidum a c eandem proportionem, quam axis d e ad e f
<
lb
/>
axem. </
s
>
<
s
xml:id
="
echoid-s3958
"
xml:space
="
preserve
">Siuero axes non ſint in eadem recta linea, demittan
<
lb
/>
tur a punctis d, f perpendiculares ad baſis planum, d g, fh:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3959
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3960
"
xml:space
="
preserve
">iungantur e g, e h. </
s
>
<
s
xml:id
="
echoid-s3961
"
xml:space
="
preserve
">Quoniam igitur axes cum baſibus
<
lb
/>
æquales angulos eontinent, erit d e g angulus æqualis an-
<
lb
/>
gulo f e h: </
s
>
<
s
xml:id
="
echoid-s3962
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3963
"
xml:space
="
preserve
">ſunt
<
lb
/>
<
figure
xlink:label
="
fig-0159-01
"
xlink:href
="
fig-0159-01a
"
number
="
114
">
<
image
file
="
0159-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0159-01
"/>
</
figure
>
anguli ad g h re-
<
lb
/>
cti, quare & </
s
>
<
s
xml:id
="
echoid-s3964
"
xml:space
="
preserve
">re-
<
lb
/>
liquus e d g æqua
<
lb
/>
lis erit reliquo
<
lb
/>
e fh: </
s
>
<
s
xml:id
="
echoid-s3965
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3966
"
xml:space
="
preserve
">triangu-
<
lb
/>
lum d e g triãgu-
<
lb
/>
lo f e h ſimile. </
s
>
<
s
xml:id
="
echoid-s3967
"
xml:space
="
preserve
">er-
<
lb
/>
go g d ad d e eſt,
<
lb
/>
ut h f ad f e: </
s
>
<
s
xml:id
="
echoid-s3968
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3969
"
xml:space
="
preserve
">per
<
lb
/>
mutando g d ad
<
lb
/>
h f, ut d e ad e f.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3970
"
xml:space
="
preserve
">Sed ſolidum a b
<
lb
/>
ad ſolidum a c
<
lb
/>
eandem propor-
<
lb
/>
tionem habet,
<
lb
/>
quam d g altitu-
<
lb
/>
do ad altitudinẽ
<
lb
/>
f h. </
s
>
<
s
xml:id
="
echoid-s3971
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s3972
"
xml:space
="
preserve
">ean-
<
lb
/>
dẽ habebit, quã
<
lb
/>
axis d e a l e f axẽ</
s
>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3973
"
xml:space
="
preserve
">Poſtremo ſint
<
lb
/>
ſolida parallelepi
<
lb
/>
peda a b, c d </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>