Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
181
(35)
182
183
(36)
184
185
(37)
186
187
(38)
188
189
(39)
190
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div272
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s4708
"
xml:space
="
preserve
">
<
pb
file
="
0188
"
n
="
188
"
rhead
="
FED. COMMANDINI
"/>
At cum e f ſit ſexta pars axis
<
lb
/>
<
figure
xlink:label
="
fig-0188-01
"
xlink:href
="
fig-0188-01a
"
number
="
138
">
<
image
file
="
0188-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-01
"/>
</
figure
>
ſphæræ, crit d e tripla e f. </
s
>
<
s
xml:id
="
echoid-s4709
"
xml:space
="
preserve
">ergo
<
lb
/>
punctum e eſt grauitatis cen-
<
lb
/>
trum ipſius pyramidis: </
s
>
<
s
xml:id
="
echoid-s4710
"
xml:space
="
preserve
">quod
<
lb
/>
in uigeſima ſecunda huius de-
<
lb
/>
monſtratum fuit. </
s
>
<
s
xml:id
="
echoid-s4711
"
xml:space
="
preserve
">Sed e eſt cen
<
lb
/>
trum ſphæræ. </
s
>
<
s
xml:id
="
echoid-s4712
"
xml:space
="
preserve
">Sequitur igitur,
<
lb
/>
ut centrum grauitatis pyrami-
<
lb
/>
dis in ſphæra deſcriptæ idem
<
lb
/>
ſit, quod ipſius ſphæræ cen-
<
lb
/>
trum.</
s
>
<
s
xml:id
="
echoid-s4713
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4714
"
xml:space
="
preserve
">Sit cubus in ſphæra deſcriptus a b, & </
s
>
<
s
xml:id
="
echoid-s4715
"
xml:space
="
preserve
">oppoſitorum pla-
<
lb
/>
norum lateribus bifariam diuiſis, per puncta diuiſionum
<
lb
/>
plana ducantur, ut communis ipſorum ſectio ſit recta li-
<
lb
/>
nea c d. </
s
>
<
s
xml:id
="
echoid-s4716
"
xml:space
="
preserve
">Itaque ſi ducatur a b, ſolidi ſcilicet diameter, lineæ
<
lb
/>
a b, c d ex trigeſimanona undecimi ſeſe bifariam ſecabunt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4717
"
xml:space
="
preserve
">ſecent autem in puncto e. </
s
>
<
s
xml:id
="
echoid-s4718
"
xml:space
="
preserve
">erit
<
lb
/>
<
figure
xlink:label
="
fig-0188-02
"
xlink:href
="
fig-0188-02a
"
number
="
139
">
<
image
file
="
0188-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0188-02
"/>
</
figure
>
e centrũ grauitatis ſolidi a b,
<
lb
/>
id quod demonſtratum eſt in
<
lb
/>
octaua huius. </
s
>
<
s
xml:id
="
echoid-s4719
"
xml:space
="
preserve
">Sed quoniam ab
<
lb
/>
eſt ſphæræ diametro æqualis,
<
lb
/>
ut in decima quinta propoſi-
<
lb
/>
tione tertii decimi libri elemẽ
<
lb
/>
torum oſtenditur: </
s
>
<
s
xml:id
="
echoid-s4720
"
xml:space
="
preserve
">punctum e
<
lb
/>
ſphæræ quoque centrum erit.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4721
"
xml:space
="
preserve
">Cubi igitur in ſphæra deſcri-
<
lb
/>
pti grauitatis centrum idem
<
lb
/>
eſt, quod centrum ipſius ſphæræ.</
s
>
<
s
xml:id
="
echoid-s4722
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4723
"
xml:space
="
preserve
">Sit octahedrum a b c d e f, in ſphæra deſcriptum, cuius
<
lb
/>
ſphæræ centrum ſit g. </
s
>
<
s
xml:id
="
echoid-s4724
"
xml:space
="
preserve
">Dico punctum g ipſius octahedri
<
lb
/>
grauitatis centrum eſſe. </
s
>
<
s
xml:id
="
echoid-s4725
"
xml:space
="
preserve
">Conſtat enim ex iis, quæ demon-
<
lb
/>
ſtrata ſunt à Campano in quinto decimo libro elemento-
<
lb
/>
rum, propoſitione ſextadecima eiuſimodi ſolidum diuidi
<
lb
/>
in duas pyramides æquales, & </
s
>
<
s
xml:id
="
echoid-s4726
"
xml:space
="
preserve
">ſimiles; </
s
>
<
s
xml:id
="
echoid-s4727
"
xml:space
="
preserve
">uidelicetin </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>