Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
21
(5)
22
23
(6)
24
25
(7)
26
27
(8)
28
29
(9)
30
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(32)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
pb
o
="
32
"
file
="
0175
"
n
="
175
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
<
p
>
<
s
xml:id
="
echoid-s4367
"
xml:space
="
preserve
">SIT fruſtũ pyramidis, uel coni, uel coni portionis a d,
<
lb
/>
cuius maior baſis a b, minor c d. </
s
>
<
s
xml:id
="
echoid-s4368
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4369
"
xml:space
="
preserve
">ſecetur altero plano
<
lb
/>
baſi æquidiſtante, ita utſectio e f ſit proportionalis inter
<
lb
/>
baſes a b, c d. </
s
>
<
s
xml:id
="
echoid-s4370
"
xml:space
="
preserve
">conſtituatur autẽ pyramis, uel conus, uel co-
<
lb
/>
ni portio a g b, cuius baſis ſit eadem, quæ baſis maior fru-
<
lb
/>
ſti, & </
s
>
<
s
xml:id
="
echoid-s4371
"
xml:space
="
preserve
">altitudo æqualis. </
s
>
<
s
xml:id
="
echoid-s4372
"
xml:space
="
preserve
">Di-
<
lb
/>
<
figure
xlink:label
="
fig-0175-01
"
xlink:href
="
fig-0175-01a
"
number
="
129
">
<
image
file
="
0175-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-01
"/>
</
figure
>
co fruſtum a d ad pyrami-
<
lb
/>
dem, uel conum, uel coni
<
lb
/>
portionem a g b eandem
<
lb
/>
proportionẽ habere, quã
<
lb
/>
utræque baſes, a b, c d unà
<
lb
/>
cum e f ad baſim a b. </
s
>
<
s
xml:id
="
echoid-s4373
"
xml:space
="
preserve
">eſt
<
lb
/>
enim fruſtum a d æquale
<
lb
/>
pyramidi, uel cono, uel co-
<
lb
/>
ni portioni, cuius baſis ex
<
lb
/>
tribus baſibus a b, e f, c d
<
lb
/>
conſtat; </
s
>
<
s
xml:id
="
echoid-s4374
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4375
"
xml:space
="
preserve
">altitudo ipſius
<
lb
/>
altitudini eſt æqualis: </
s
>
<
s
xml:id
="
echoid-s4376
"
xml:space
="
preserve
">quod mox oſtendemus. </
s
>
<
s
xml:id
="
echoid-s4377
"
xml:space
="
preserve
">Sed pyrami
<
lb
/>
des, coni, uel coni portiões,
<
lb
/>
<
figure
xlink:label
="
fig-0175-02
"
xlink:href
="
fig-0175-02a
"
number
="
130
">
<
image
file
="
0175-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-02
"/>
</
figure
>
quæ ſunt æquali altitudine,
<
lb
/>
eãdem inter ſe, quam baſes,
<
lb
/>
proportionem habent, ſicu-
<
lb
/>
ti demonſtratum eſt, partim
<
lb
/>
ab Euclide in duodecimo li-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0175-01
"
xlink:href
="
note-0175-01a
"
xml:space
="
preserve
">6. 11. duo
<
lb
/>
decimi</
note
>
bro elementorum, partim à
<
lb
/>
nobis in cõmentariis in un-
<
lb
/>
decimam propoſitionẽ Ar-
<
lb
/>
chimedis de conoidibus, & </
s
>
<
s
xml:id
="
echoid-s4378
"
xml:space
="
preserve
">
<
lb
/>
ſphæroidibus. </
s
>
<
s
xml:id
="
echoid-s4379
"
xml:space
="
preserve
">quare pyra-
<
lb
/>
mis, uel conus, uel coni por-
<
lb
/>
tio, cuius baſis eſt tribus illis
<
lb
/>
baſibus æqualis ad a g b eam
<
lb
/>
habet proportionem, quam
<
lb
/>
baſes a b, e f, c d ad ab bafim. </
s
>
<
s
xml:id
="
echoid-s4380
"
xml:space
="
preserve
">Fruſtum igitur a d ad a g </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>