Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
21
(5)
22
23
(6)
24
25
(7)
26
27
(8)
28
29
(9)
30
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4436
"
xml:space
="
preserve
">
<
pb
file
="
0178
"
n
="
178
"
rhead
="
FED. COMMANDINI
"/>
producantur. </
s
>
<
s
xml:id
="
echoid-s4437
"
xml:space
="
preserve
">Quoniam igitur pyramis ſecatur planis bafi
<
lb
/>
æquidiſtantibus, ſectiones ſimiles erunt: </
s
>
<
s
xml:id
="
echoid-s4438
"
xml:space
="
preserve
">atque erunt qua-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0178-01
"
xlink:href
="
note-0178-01a
"
xml:space
="
preserve
">9. huius</
note
>
drata, uel rectangula circa circulos, uel ellipſes deſcripta,
<
lb
/>
quemadmodum & </
s
>
<
s
xml:id
="
echoid-s4439
"
xml:space
="
preserve
">in ipſa baſi. </
s
>
<
s
xml:id
="
echoid-s4440
"
xml:space
="
preserve
">Sed cum circuli inter ſe eã
<
lb
/>
proportionem habeant, quam diametrorum quadrata:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4441
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0178-02
"
xlink:href
="
note-0178-02a
"
xml:space
="
preserve
">2. duode-
<
lb
/>
cimi.</
note
>
itemq; </
s
>
<
s
xml:id
="
echoid-s4442
"
xml:space
="
preserve
">ellipſes eam quam rectangula ex ipſarum diametris
<
lb
/>
conſtantia: </
s
>
<
s
xml:id
="
echoid-s4443
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4444
"
xml:space
="
preserve
">ſit circulus, uel ellipſis circa diametrum e f
<
lb
/>
<
figure
xlink:label
="
fig-0178-01
"
xlink:href
="
fig-0178-01a
"
number
="
133
">
<
image
file
="
0178-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0178-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0178-03
"
xlink:href
="
note-0178-03a
"
xml:space
="
preserve
">7. de co-
<
lb
/>
noidibus
<
lb
/>
& ſphæ-
<
lb
/>
roidibus</
note
>
proportionalis inter circulos, uel ellipſes a b, c d; </
s
>
<
s
xml:id
="
echoid-s4445
"
xml:space
="
preserve
">erit re-
<
lb
/>
ctangulum e f etiam inter rectangula a b, c d proportio-
<
lb
/>
nale: </
s
>
<
s
xml:id
="
echoid-s4446
"
xml:space
="
preserve
">per rectangulum enim nunc breuitatis cauſa etiã ip-
<
lb
/>
ſum quadratum intelligemus. </
s
>
<
s
xml:id
="
echoid-s4447
"
xml:space
="
preserve
">quare ex iis, quæ proxime
<
lb
/>
dicta ſunt, pyramis baſim habens æqualem dictis rectangu
<
lb
/>
lis, & </
s
>
<
s
xml:id
="
echoid-s4448
"
xml:space
="
preserve
">altitudinem eandem, quam fruſtum a d, ipſi fruſto à
<
lb
/>
pyramide abſciſſo æqualis probabitur. </
s
>
<
s
xml:id
="
echoid-s4449
"
xml:space
="
preserve
">ut autem rectangu
<
lb
/>
lum c d ad rectangulũ e f, ita circulus, uel ellipſis c d a d e f
<
lb
/>
circulum, uel ellipſim: </
s
>
<
s
xml:id
="
echoid-s4450
"
xml:space
="
preserve
">componendoq; </
s
>
<
s
xml:id
="
echoid-s4451
"
xml:space
="
preserve
">ut rectangula c d,
<
lb
/>
e f, ad e f rectangulum, ita circuli, uel ellipſes e d, e f, ad e f:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s4452
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4453
"
xml:space
="
preserve
">ut rectangulum e f ad rectangulum a b, ita cir culus, uel
<
lb
/>
cllipſis e f ad a b circulum, uel ellipſim. </
s
>
<
s
xml:id
="
echoid-s4454
"
xml:space
="
preserve
">ergo ex æquali, & </
s
>
<
s
xml:id
="
echoid-s4455
"
xml:space
="
preserve
">
<
lb
/>
componendo, utrectãgula c d, e f, a b ad ipſum a b, ita </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>