Salusbury, Thomas
,
Mathematical collections and translations (Tome I)
,
1667
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 580
581 - 590
591 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 650
651 - 660
661 - 670
671 - 680
681 - 690
691 - 700
701 - 701
>
211
212
213
214
215
216
217
218
219
220
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 580
581 - 590
591 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 650
651 - 660
661 - 670
671 - 680
681 - 690
691 - 700
701 - 701
>
page
|<
<
of 701
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
040/01/219.jpg
"
pagenum
="
201
"/>
588000000 yards (for ſo many are in 56 diameters of the Earth)
<
lb
/>
be paſſed? </
s
>
<
s
>The rule for this work is, that the third number muſt
<
lb
/>
be multiplied by the ſquare of the ſecond, of which doth come
<
lb
/>
14700000000, which ought to be divided by the firſt, that is, by
<
lb
/>
100, and the root ſquare of the quotient, that is, 12124 is the
<
lb
/>
number ſought, namely 12124
<
emph
type
="
italics
"/>
min. </
s
>
<
s
>ſecun.
<
emph.end
type
="
italics
"/>
of an hour, which are
<
lb
/>
3 hours, 22
<
emph
type
="
italics
"/>
min. </
s
>
<
s
>prim.
<
emph.end
type
="
italics
"/>
and 4 ſeconds.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SAGR. </
s
>
<
s
>I have ſeen the working, but I know nothing of the
<
lb
/>
reaſon for ſo working, nor do I now think it a time to ask it.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SALV. </
s
>
<
s
>Yet I will give it, though you do not ask it, becauſe it
<
lb
/>
is very eaſie. </
s
>
<
s
>Let us mark theſe three numbers with the Letters
<
lb
/>
A firſt, B ſecond, C
<
lb
/>
<
figure
id
="
id.040.01.219.1.jpg
"
xlink:href
="
040/01/219/1.jpg
"
number
="
8
"/>
<
lb
/>
third. </
s
>
<
s
>A and C are the
<
lb
/>
numbers of the ſpaces,
<
lb
/>
B is the number of the
<
lb
/>
time; the fourth number
<
lb
/>
is ſought, of the time
<
lb
/>
alſo. </
s
>
<
s
>And becauſe we
<
lb
/>
know, that look what
<
lb
/>
proportion the ſpace A,
<
lb
/>
hath to the ſpuace C, the
<
lb
/>
ſame proportion ſhall the
<
lb
/>
ſquare of the time B
<
lb
/>
have to the ſqare of the
<
lb
/>
time, which is ſought.
<
lb
/>
</
s
>
<
s
>Therefore by the Golden Rule, let the number C be
<
lb
/>
plied by the ſquare of the number B, and let the product be
<
lb
/>
vided by the number A, and the quotient ſhall be the ſquare of
<
lb
/>
the number ſought, and its ſquare root ſhall be the number it ſelf
<
lb
/>
that is ſought. </
s
>
<
s
>Now you ſee how eaſie it is to be underſtood.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SAGR. </
s
>
<
s
>So are all truths, when once they are found out, but the
<
lb
/>
difficulty lyeth in finding them. </
s
>
<
s
>I very well apprehend it, and kindly
<
lb
/>
thank you. </
s
>
<
s
>And if there remain any other curioſity touching this
<
lb
/>
point, I pray you let us hear it; for if I may ſpeak my mind, I
<
lb
/>
will with the favour of
<
emph
type
="
italics
"/>
Simplicius,
<
emph.end
type
="
italics
"/>
that from your diſcourſes I
<
lb
/>
wayes learn ſome new motion, but from thoſe of his
<
lb
/>
phers, I do not remember that I have learn't any thing of
<
lb
/>
ment.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SALV. </
s
>
<
s
>There might be much more ſaid touching theſe local
<
lb
/>
motions; but according to agreement, we will reſerve it to a
<
lb
/>
ticular conference, and for the preſent I will ſpeak ſomething
<
lb
/>
touching the Author named by
<
emph
type
="
italics
"/>
Simplicius,
<
emph.end
type
="
italics
"/>
who thinketh he hath
<
lb
/>
given a great advantage to the adverſe party in granting that, that
<
lb
/>
Canon bullet in falling from the concave of the Moon may
<
lb
/>
ſcend with a velocity equal to the velocity wherewith it would </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>