Salusbury, Thomas
,
Mathematical collections and translations (Tome I)
,
1667
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 580
581 - 590
591 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 650
651 - 660
661 - 670
671 - 680
681 - 690
691 - 700
701 - 701
>
221
222
223
224
225
226
227
228
229
230
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 580
581 - 590
591 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 650
651 - 660
661 - 670
671 - 680
681 - 690
691 - 700
701 - 701
>
page
|<
<
of 701
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
040/01/224.jpg
"
pagenum
="
206
"/>
of the accelerated degrees of velocity, anſwering to the triangle
<
lb
/>
A B C, hath paſſed in ſuch a time ſuch a ſpace, it is very reaſonable
<
lb
/>
and probable, that making uſe of the uniform velocities anſwering
<
lb
/>
to the parallelogram, it ſhall paſſe with an even motion in the
<
lb
/>
ſame time a ſpace double to that paſſed by the accelerate
<
lb
/>
tion.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SAGR. </
s
>
<
s
>I am entirely ſatisfied. </
s
>
<
s
>And if you call this a probable
<
lb
/>
Diſcourſe, what ſhall the neceſſary demonſtrations be? </
s
>
<
s
>I wiſh
<
lb
/>
that in the whole body of common Philoſophy, I could find one
<
lb
/>
that was but thus
<
lb
/>
<
arrow.to.target
n
="
marg408
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
marg408
"/>
<
emph
type
="
italics
"/>
In natural
<
lb
/>
ences it is not
<
lb
/>
ceſſary to ſeek
<
lb
/>
thematicall
<
lb
/>
dence.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SIMP. </
s
>
<
s
>It is not neceſſary in natural Philoſophy to ſeek
<
lb
/>
ſite Mathematical evidence.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SAGR. </
s
>
<
s
>But this point of motion, is it not a natural queſtion?
<
lb
/>
</
s
>
<
s
>and yet I cannot find that
<
emph
type
="
italics
"/>
Ariſtotle
<
emph.end
type
="
italics
"/>
hath demonſtrated any the
<
lb
/>
leaſt accident of it. </
s
>
<
s
>But let us no longer divert our intended
<
lb
/>
Theme, nor do you fail, I pray you
<
emph
type
="
italics
"/>
Salviatus,
<
emph.end
type
="
italics
"/>
to tell me that
<
lb
/>
which you hinted to me to be the cauſe of the
<
emph
type
="
italics
"/>
Pendulum's
<
emph.end
type
="
italics
"/>
<
lb
/>
eſcence, beſides the reſiſtance of the
<
emph
type
="
italics
"/>
Medium
<
emph.end
type
="
italics
"/>
ro penetration.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SALV. </
s
>
<
s
>Tell me; of two
<
emph
type
="
italics
"/>
penduli
<
emph.end
type
="
italics
"/>
hanging at unequal
<
lb
/>
ces, doth not that which is faſtned to the longer threed make its
<
lb
/>
vibrations more ſeldome?</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
marg409
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
marg409
"/>
<
emph
type
="
italics
"/>
The
<
emph.end
type
="
italics
"/>
pendulum
<
lb
/>
<
emph
type
="
italics
"/>
hanging at a
<
lb
/>
er threed, maketh
<
lb
/>
its vibrations more
<
lb
/>
ſeldome than the
<
emph.end
type
="
italics
"/>
<
lb
/>
pendulum
<
emph
type
="
italics
"/>
hanging
<
lb
/>
at a ſhorter threed.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SAGR. Yes, if they be moved to equall diſtances from their
<
lb
/>
perpendicularity.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>SALV. </
s
>
<
s
>This greater or leſſe elongation importeth nothing at
<
lb
/>
all, for the ſame
<
emph
type
="
italics
"/>
pendulum
<
emph.end
type
="
italics
"/>
alwayes maketh its reciprocations in
<
lb
/>
quall times, be they longer or ſhorter, that is, though the
<
emph
type
="
italics
"/>
pendulum
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
marg410
"/>
<
lb
/>
be little or much removed from its perpendicularity, and if they
<
lb
/>
are not abſolutely equal, they are inſenſibly different, as
<
lb
/>
rience may ſhew you: and though they were very unequal, yet
<
lb
/>
would they not diſcountenance, but favour our cauſe. </
s
>
<
s
>
<
lb
/>
fore let us draw the perpendicular A B [
<
emph
type
="
italics
"/>
in Fig.
<
emph.end
type
="
italics
"/>
9.] and hang from
<
lb
/>
the point A, upon the threed A C, a plummet C, and another
<
lb
/>
on the ſame threed alſo, which let be E, and the threed A C, being
<
lb
/>
removed from its perpendicularity, and then letting go the
<
lb
/>
mets C and E, they ſhall move by the arches C B D, E G F, and
<
lb
/>
the plummet E, as hanging at a leſſer diſtance, and withall, as
<
lb
/>
(by what you ſaid) leſſe removed, will return back again faſter,
<
lb
/>
and make its vibrations more frequent than the plummet C, and
<
lb
/>
therefore ſhall hinder the ſaid plummet C, from running ſo much
<
lb
/>
farther towards the term D, as it would do, if it were free: and
<
lb
/>
thus the plummet E bringing unto it in every vibration continuall
<
lb
/>
<
arrow.to.target
n
="
marg411
"/>
<
lb
/>
impediment, it ſhall finally reduce it to quieſcence. </
s
>
<
s
>Now the
<
lb
/>
ſame threed, (taking away the middle plummet) is a compoſition
<
lb
/>
of many grave
<
emph
type
="
italics
"/>
penduli,
<
emph.end
type
="
italics
"/>
that is, each of its parts is ſuch a
<
emph
type
="
italics
"/>
<
lb
/>
lum
<
emph.end
type
="
italics
"/>
faſtned neerer and neerer to the point A, and therefore </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>