Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
41
(15)
42
43
(16)
44
45
(17)
46
47
(18)
48
49
(19)
50
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(20)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div231
"
type
="
section
"
level
="
1
"
n
="
79
">
<
p
>
<
s
xml:id
="
echoid-s3799
"
xml:space
="
preserve
">
<
pb
o
="
20
"
file
="
0151
"
n
="
151
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
beat eam, quam χ τ ad τ f. </
s
>
<
s
xml:id
="
echoid-s3800
"
xml:space
="
preserve
">erit diuidendo ut χ f ad f τ, ita fi
<
lb
/>
gura ſolida inſcripta ad partem exceſſus, quæ eſtintra pyra
<
lb
/>
midem. </
s
>
<
s
xml:id
="
echoid-s3801
"
xml:space
="
preserve
">Cum ergo à pyramide, cuius grauitatis cẽtrum eſt
<
lb
/>
punctum f, ſolida figura inſcripta auferatur, cuius centrũ
<
lb
/>
τ: </
s
>
<
s
xml:id
="
echoid-s3802
"
xml:space
="
preserve
">reliquæ magnitudinis conſtantis ex parte exceſſus, quæ
<
lb
/>
eſtintra pyramidem, centrum grauitatis erit in linea τ f
<
lb
/>
producta, & </
s
>
<
s
xml:id
="
echoid-s3803
"
xml:space
="
preserve
">in puncto χ. </
s
>
<
s
xml:id
="
echoid-s3804
"
xml:space
="
preserve
">quod fieri non poteſt. </
s
>
<
s
xml:id
="
echoid-s3805
"
xml:space
="
preserve
">Sequitur
<
lb
/>
igitur, ut centrum grauitatis pyramidis in linea d e; </
s
>
<
s
xml:id
="
echoid-s3806
"
xml:space
="
preserve
">hoc
<
lb
/>
eſt in eius axe conſiſtat.</
s
>
<
s
xml:id
="
echoid-s3807
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3808
"
xml:space
="
preserve
">Sit conus, uel coni portio, cuius axis b d: </
s
>
<
s
xml:id
="
echoid-s3809
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3810
"
xml:space
="
preserve
">ſecetur plano
<
lb
/>
per axem, ut ſectio ſit triangulum a b c. </
s
>
<
s
xml:id
="
echoid-s3811
"
xml:space
="
preserve
">Dico centrum gra
<
lb
/>
uitatis ipſius eſſe in linea b d. </
s
>
<
s
xml:id
="
echoid-s3812
"
xml:space
="
preserve
">Sit enim, ſi fieri poteſt, centrũ
<
lb
/>
<
figure
xlink:label
="
fig-0151-01
"
xlink:href
="
fig-0151-01a
"
number
="
104
">
<
image
file
="
0151-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0151-01
"/>
</
figure
>
e: </
s
>
<
s
xml:id
="
echoid-s3813
"
xml:space
="
preserve
">perq; </
s
>
<
s
xml:id
="
echoid-s3814
"
xml:space
="
preserve
">e ducatur e f axi æquidiſtans: </
s
>
<
s
xml:id
="
echoid-s3815
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3816
"
xml:space
="
preserve
">quam propor-
<
lb
/>
tionem habet c d ad d f, habeat conus, uel coni portio ad
<
lb
/>
ſolidum g. </
s
>
<
s
xml:id
="
echoid-s3817
"
xml:space
="
preserve
">inſcribatur ergo in cono, uel coni portione </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>