Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

List of thumbnails

< >
531
531 (cccclxxv)
532
532 (cccclxxvi)
533
533 (cccclxxvij)
534
534 (cccclxxviij)
535
535 (cccclxxix)
536
536 (cccclxxx)
537
537 (cccclxxxi)
538
538 (cccclxxxij)
539
539 (cccclxxxiij)
540
540 (cccclxxxiiij)
< >
page |< < (dxv) of 997 > >|
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div xml:id="echoid-div718" type="section" level="1" n="68">
          <p>
            <s xml:id="echoid-s16462" xml:space="preserve">
              <pb o="dxv" file="0571" n="571" rhead="ſachen/ Das zwölfft bůch."/>
            darumb ſeind wir in der taflen faal. </s>
            <s xml:id="echoid-s16463" xml:space="preserve">Es iſt aber die ſchooß C D bekannt/
              <lb/>
            dann es iſt die ſchooß des bekannten überblibenen D A/ vnd die ſchooß des
              <lb/>
            eck F bekant. </s>
            <s xml:id="echoid-s16464" xml:space="preserve">Deßhalben wöllẽ wir vnder die zaal des beſeitz eck F in der mit-
              <lb/>
            le den bogen D C ſůchen/ vnd wirt beyſeitz des bogen C F qualitet bekannt
              <lb/>
            ſein. </s>
            <s xml:id="echoid-s16465" xml:space="preserve">wañ die ſelbig bekañt/ haſt du das überig alles ſamen/ als in vorgendẽ
              <lb/>
            exemplen zůuerſthon. </s>
            <s xml:id="echoid-s16466" xml:space="preserve">Alſo haſt du ein exempel des erſten werck in der and@
              <lb/>
            ren ſchlußred Monteregij. </s>
            <s xml:id="echoid-s16467" xml:space="preserve">aber diſer gegenwertigen in der ſechßten/ vnnd
              <lb/>
            der nachuolgenden in der fünff vnd viertzigſten. </s>
            <s xml:id="echoid-s16468" xml:space="preserve">alſo werden mit diſen drey
              <lb/>
            en exemplen alle würckungen bekañt/ dañ daß man etwan diſe drey widerä-
              <lb/>
            feren oder vermiſchen můß. </s>
            <s xml:id="echoid-s16469" xml:space="preserve">Auß wölchem auch offenbar/ weil in der gan-
              <lb/>
            tzen figur A B C neün theil der circklen ſeind/ laßet man B C in den ande-
              <lb/>
            ren/ vnd gibt ſonſt zwen andere/ ſo nit theil eines quadranten ſeind/ damit
              <lb/>
            man die übrigen ſechs alle erkennen möge.</s>
            <s xml:id="echoid-s16470" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s16471" xml:space="preserve">Darumb iſt der deitt faal/ daß die ſeitten F G (damit ich ein exempel ge-
              <lb/>
            be) kein rechteck mache/ auch nit mit B F oder B G. </s>
            <s xml:id="echoid-s16472" xml:space="preserve">Deßhalben offenbar/
              <lb/>
            dz ſie nit durch die Polos geth/ nach der ſechßten vorgendẽ propoſition. </s>
            <s xml:id="echoid-s16473" xml:space="preserve">Da
              <lb/>
            rumb in diſes Trigon/ o{der} triãgels figur B F G/ ſo beſeitz geſtellet auff ein
              <lb/>
            triangel des großen quadranten/ durch die lenger ſeiten die B F ſeye/ ziehe
              <lb/>
            man ein quadranten auß dem polo C/ welcher ſeye C F E/ vnd füre man B
              <lb/>
            F biß zů dem C. </s>
            <s xml:id="echoid-s16474" xml:space="preserve">Deßhalben ſag ich wañ die ſeitten B G vñ B F bekannt/ ſo
              <lb/>
            wirt auch dz eck/ welches dritt ſeiten F G bekant ſein/ dann in dem triangel
              <lb/>
            ſo gleiche eck hatt B E F/ iſt das A D bekannt. </s>
            <s xml:id="echoid-s16475" xml:space="preserve">dañ das eck B vnd B F hab
              <lb/>
            ich bey dem A D vnd B F in der tafel mitte F E/ vñ diſer nennet er die erſt
              <lb/>
            erfindung. </s>
            <s xml:id="echoid-s16476" xml:space="preserve">darnach mit diſer erfindung überblibenen/ welches ein bogen
              <lb/>
            beſeitz F C vnnd inn der mitte F D/ auch mit dem bekannten überblibenen
              <lb/>
            F B/ ghen ich in die taflen/ vnnd werden alſo nach dem erſten exempel inn
              <lb/>
            der gemeinen ſeitten A E haben/ wann man diſes von dem bekañten A G
              <lb/>
            zeücht/ weil es das überbeliben des bekannten B G/ wirt das E G bekañt
              <lb/>
            ſein. </s>
            <s xml:id="echoid-s16477" xml:space="preserve">Alſo haben wir ein gerecht eckechtigen triangel E F G mit den zweyen
              <lb/>
            ſeiten/ ſo den geraden einſchlieſſend E F vnnd E G ſo bekannt ſeind. </s>
            <s xml:id="echoid-s16478" xml:space="preserve">deß-
              <lb/>
            halbẽ iſt durch die ander propoſition der gantzen ſchooß proportz/ gegẽ der
              <lb/>
            ſchooß des über belibenen E G/ wie die ſchoß des überblibenen E F gegen
              <lb/>
            der ſchoß des überblibenen F G. </s>
            <s xml:id="echoid-s16479" xml:space="preserve">darumb gang ich in die taflen/ vnnd ſůch
              <lb/>
            an den ſeitten das überig E F der erſten erfindung/ vnnd C G/ welches er
              <lb/>
            den anderen fund nennet/ find alſo in dem gemeinen boden vnd mittel das
              <lb/>
            überig F G/ wañ daſſelbig von neüntzig grad oder dem quadranten abge-
              <lb/>
            zogen/ iſt F G bekant vorhanden/ welches man begert hatt. </s>
            <s xml:id="echoid-s16480" xml:space="preserve">Wañ man aber
              <lb/>
            drey ſeiten ſetzet an dem triangel B F G/ ſo můß man ein anderen weg zů
              <lb/>
            handen nemmen/ ſo vor gemeldet/ ehe wir die taflen von bogen vnd ſchoo-
              <lb/>
              <note position="right" xlink:label="note-0571-01" xlink:href="note-0571-01a" xml:space="preserve">Der orth g@-
                <lb/>
              legẽheit auſs
                <lb/>
              der Sonnen
                <lb/>
              tafel.</note>
            ſen erkläret haben. </s>
            <s xml:id="echoid-s16481" xml:space="preserve">Wañ nun ſelliches verſtandẽ/ ſetze man den Aequino
              <lb/>
            ctial polus B an dem Aequinoctial A C. </s>
            <s xml:id="echoid-s16482" xml:space="preserve">vnd ſey das ein ort E an dem mit
              <lb/>
            tag circkel B A/ ſo wirt das ander eintweder inn dem ſelbigen circkel ſein/
              <lb/>
            nam̃lich G/ vñ weil A B ein großer circkel iſt/ wöllẽ wir den vnderſcheld E
              <lb/>
            G durch lx ziehen oder multiplicieren/ ſo haben wir tauſet ſchritt.</s>
            <s xml:id="echoid-s16483" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s16484" xml:space="preserve">Nimb ein exempel. </s>
            <s xml:id="echoid-s16485" xml:space="preserve">Meyland hatt in der lenge dreiſſig grad vnd viertzig
              <lb/>
            minuten/ vnd ligt von dem Aequinoctial vier vnd viertzig grad vnd fünff
              <lb/>
            zehen minuten. </s>
            <s xml:id="echoid-s16486" xml:space="preserve">Neaplaß in Sardiniẽ bey dem hohẽ gebirg Pachian/ hatt
              <lb/>
            auch die ſelbige lengen/ aber an der breitte ſechs vnnd dreiſſig grad. </s>
            <s xml:id="echoid-s16487" xml:space="preserve">alſo </s>
          </p>
        </div>
      </text>
    </echo>